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SECTION I

INTRODUCTION

The increasing use of composite materials in structural applications, such as

automobiles, aircraft and space structures, is characterized by their high strength

(stiffness)-to-weight ratio, low maintenance costs and the flexibility in tailoring the

stiffness and strength to design requirements. As fiber reinforced laminates h.1ve

played a more important role in high performance structures for the last 2 decades, the

need to have accurate stress and failure analysis become apparent for design or repair

purpose.

Recent development in the analysis of composite laminate coupons under uniform

extension indicated that the high interlaminar stresses near the free-edge are mainly

responsible for delamination failure [1]. Before delamination can be predicted on the

basis of a stress-based failure criterion, it is essential that a highly reliable estimate of

interlaminar stresses be available for the given situation. However, it has been

difficult to obtain solutions for the stress field because of the anisotropy as well as

heterogeneity of the material, and the difficulty of satisfying traction-free boundary

condition in a solution procedure based on the displacement formulation.

Consideraole research efforts have been devoted to the study of such free-edge

delamination problem. These can be classified as analytical and numerical approaches.

The analytical solutions are based upon simple elastic approximation [2,31 modified

higher order theory [41 Galerkin method [51, Perturbation technique [61, Boundary layer



theory [7], Reissner's variational principle [8,91, Global-local model (10] etc., while the

numerical solutions are based on finite difference [11,12] and finite element methods

including displacement [13-16], stress [17] and hybrid [18,19] formulations. It was

found that some of the solution techniques were only applicable under certain

conditions. For this reason, a complete stress distribution was usually hard to obtain.

Although results calculated from various approaches have demonstrated similarities in

some cases, discrepancies d( e:,ist in the magnitude as, well as sign of the computed

interlaminar stresses near the free-edge of laminate coupons. One example is shown in

Figure (1) in which significant difference \as observed for or stress distribution alonm

the interface of [45/-451., laminate based on various solution techniques [19].

Apparently, one possible source of these discrepancies is that, in these methods, the

continuity conditions for displacements and tractions across laminate interfaces along

with traction-free boundary condition along free-edges characteristic of the real life

situation, can only be approximated to a limited extent. However, the credibility of

various methods in predicting the a, distribution shown in Figure (1) will be judged

later.

Due to the presence of singular interlaminar stresses near the laminate

free-boundary, edge delamination associated with various types of damage modes, such

as fiber breakage. matrix cracking, fiber-matrix debonding, etc., are observed to occur

under incremental loading. Delamination can be simply interpreted as separation of

laminae from each other in the laminate, and can occur under static, impact or fatigue

loading conditions. For the case of a symmetric laminate under inplane loading, the

strain components are essentially uniform throughout the laminate. Due to the

free-edge effect the out-of-plane interlaminar stresses, however, may be sufficiently

2
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large to damage the matrix material, which bonds adjacent plies together, and cause

delamination.

Two generic approaches are available for investigating damage modes in composite

materials. The first approach involves a detailed stress analysis used in conjunction

with a failure criterion to predict, and measure experimentally, the onset of fiber

fracture, matrix cracking and delamination. This can be referred to as the strength

characterizalion approach. In the second approach, classical linear elastic f:-acture

mechanics can be applied to characterize matriN cracking and the delamination process.

l)elamination has usually been isolated from the other damage modes and treated as a

stable crack growth [20-25], and the basic character of the strain energy release rate

has been widely used to predict the kinematic behavior of delamination. However,

experiments [261 have indicated that delamination usually does not produce a clean

surface between the adjacent plies; instead it is associated with other types of damage

such as matrix cracking and fiber breakage. Thus, use of linear elastic fracture

mechanics approach to study delamination growth seems to be inappropriate.

Meanwhile, due to the irregular occurrence of various damage modes in the form of

different cracking patterns, use of anisotropic strength and failure criteria is apparently

superior to the fracture mechanic approach for the determination of damage

characteristics such as type of failure mode, damage zone and crack growth behavior

including delanination.

The primary objective of the present research was to develop a finite element

model with a sound theoretical background, which could accurately and efficiently

predict the complete stress field of the free-edge stress problem in composite laminates

without resorting to any special singularity elements. The next was to incorporate

4



various commonly known macroscopic failure criteria into the finite element

computational procedure to evaluate the performance of various criteria on the

determination of onset of matrix cracking and delamination in the composite laminate

specimens under uniform extension. In Section I1, a review of analytical and

numerical methods related to the free-edge stress problem is presented. Section IIl

contains the theoretical foundation of the finite element formulation including basic

variational principles. Section IV describes a continuous strain finite element model

based on a compatible cubic interpx)lation function. A continuous traction finite

element procedure for analysis of free-edge delamination specimens is developed in

%ection V. In Section VI, analysis of free-edge effect as well as onset of delamination

in various types of laminated specimens are presented. Section VII contains discussion

of the proposed finite element models for analysis of free-edge delamination specimens.

Derivation of Felippa's compatible cubic interpolation function is summarized in the

Appendix.



SECTION U

REVIEW OF EARLIER WORK

2.1 Introduction

The problem of calculating interlaminar stresses near the free-edges of a layered

composite under uniform inplne extension has been investigated by many researchers.

Most approximate solutions [2-7,10-19] are based upon elasticity theory and treat the

problem as a generalized plane strain case. This is because first of all, the classical

and even many of the refined laminate theories, are single-layer theories which do not

account for local effects such as geometric and material discontinuities, and the presence

of a free-edge; secondly, use of discrete layered theory is very uneconomical and

impractical from the computational stand point. An effective modulus formulation [27)

in which each layer is characterized as a homogeneous, anisotropic material has been

widely used [1-19]. A complex state of stress with high gradients has been noticed

[191 in the neighborhood of the free-edge due to the presence of interlaminar stresses to

keep the laminae in a state of equilibrium. In order to have a precise prediction of

delamination behavior, an accurate estimate for the near-field stress distribution is

essential. However, due to the singular nature of the boundary-layer stress field [19],

an exact solution is currently unavailable, and discrepancies exist in the magnitude and

even the sign of the computed interlaminar stresses near the free-edge (Figure 1) based

on various approximate theories.

6



2.2 Analytical Approach

Except for Pagano's [8] approximate theory based on Reissner's variational principle

and Pagano and Soni's [10] Global-local model, most analytical solutions discussed in

this section are obtained by using various engineering methods to solve the

displacement-equilibrium equations under certain assumptions. Thus, these can be

regarded as approximate solutions based upon elasticity theory.

2.2.1 Approximate Elasticity Solution

Investigations of the free-edge problem \kas carried out by Puppo and Evensen [2]

using a comxpsite model essentially consisting of a set of anisotropic layers separated

by isotropic adhesive layers. It was assumed that the isotropic layers, developed only

interlaminar shear stresses, acting as an adhesive between the anisotropic layers. It was

reported that a sharp rise of the interlaminar shear stress could be observed in finite

width laminates. However, the simplicity of these elastic formulations precluded

calculation of the transverse normal stress, and the problem became more complicated

when more layers were involved.

In an attempt to approximate the interlaminar normal stress, a simplified formula

was developed by Pagano and Pipes [1]. The strategy was to use solutions along the

longitudinal mid-plane of the laminate based upon classical laminated plate theory. one

could then compute the force and moment resultants caused by the interlaminar stresses

on any plane z=constant through consideration of static equilibrium. The maximum

interlaminar normal stress at the free-edge could then be expressed in terms of the

transverse stress in the y-direction calculated from the laminated plate theory.

Another approximate elasticity solution proposed by Pipes and Pagano [3] was based

upon displacement-equilibrium equations for an anisotropic elastic medium. Assuming

7



the transverse stresses in the y-, z- directions to %anish, the equations were written in

terms of the single variable U (axial displacement function). This yielded components

of displacement, strain as well as remaining stress fields in the form of

sinusoidal-hyperbolic series. However, violation of stress equilibrium in the transverse

directions as well as neglect of the interlaminar normal stress constituted major

drawbacks of this scheme.

2.2.2 Modified Higher Order Theory

llagano [4] derived another approximate method for determination of distribution of

the inlerlaminar normal stress along the mid-plane of a symmetric, finite width

laminate. The approach was based upon a modified version of a higher order theory

proposed by Whitney and Sun [28], which recognized the effect of shear deformation

through the inplane rotations as well as the thickness strain implemented in the

assumed displacement field. However, like the approximate theories discussed

previously, none of them were able to determine the complete stress field near the

free-edge.

2.2.3 Galerkin's Method

Due to the fact that high stress gradients occurring near the free-edge are difficult

to estimate by numerical approaches, Wang and Dickson [5] applied the extended

Galerkin's approach, in which interlaminar stresses and displacements of each layer

satisfying geometrical boundary conditions were represented as series of Legendre

polynomials. The final solution was reached by requiring the satisfaction of continuity

conditions at each interface as well as stress boundary conditions at exterior planes.

Due to tI ." completeness of Legendre polynomials, convergence of solutions could be

expected.

8



2.2.4 Perturbation Technique

In an effort to obtain more accurate free-edge stress intensities, a perturbation

technique was applied by Hsu and Jlerakovich [6] to solve the three coupled

dimensionless partial differential equations based upon a displacement formulation of

the elastic problem. It showed that the perturbation solution provided a smooth

continuous stress distribution in the vicinity of the free-edge. However, this solution

had the limitation that the -hear stress distribution was a function of both laminate

thickness-to-width ratio and v problen-dependent parameter. Although the latter could

be chosen such that the maximum values of shear stress field did not exceed elastic

limits, the accuracy of the calculated stresses was suspect.

2.2.5 Boundary Layer Theory

A boundary layer theory for laminated composites in plane stress was developed

by Tang and Levy [7] from the three-dimensional theory of anisotropic elasticity. By

expanding the stresses, displacements, body forces and surface tractions in power series

of the half-thickness of a lamina in the equations of equilibrium, compatibility and

boundary conditions, a sequence of systems of equations was obtained. The complete

solution was obtained by combining solutions of the interior domain based on the

classical lamination theory and those from boundary layer and matching a set of

appropriate boundary conditions. This formulation indeed provided a way to obtain

analytical solution for estimating interlaminar normal as well as shear stress

distribution.
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2.2.6 Reissner's Variational Principle

In order to have displacement as well as stress continuity, a mixed formulation is

sometimes used. Unlike the elastic approximations discussed previously, Pagano [8]

developed an approximate theory for a general composite laminate based upon an

application of Reissner's variational principle. In this theory, the inplane stresses are

considered linear in the thickness coordinate while the transverse stresses derived from

equilibrium consideration are cubic. If a laminate or a single lamina is viewed as an

assembly of N sheets, each having a finite thickness and required to satisfy force and

moment equilibrium, the analysis led to a set of 23N algebraic and ordinary

differential equations which had to be solved simultaneously. Based upon the

assumption that the stress field is independent of the longitudinal axis, Pagano [91

further specialized the theory to the free-edge problem by reducing the stress field

determination to the solution of a one-dimensional problem. Despite the relative

accuracy of this theory resulting from the improvement of smoothness for both

displacement and traction fields at interfaces between adjacent layers, a major drawback

was that its application was limited at most to six sublayers.

2.2.7 Global-local Model

Pagano [10] introduced a global-local model, which was able to define detailed

response functions in a particular, predetermined region of interest while representing

the remainder of the domain by effective properties, that reduced the number of

variables in a given problem. In this model, for the global region of the laminate,

potential energy has been utilized, and the displacement components were based upon

the assumption given by Whitney and Sun [281 The Reissner variational principle

described in [8], however, was applied for the local region in which a thickness

10



distribution o' stress field satisfying equilibrium equation within each layer was

assumed. A variational principle was then used to derive the governing equations of

equilibrium for the whole system. It was reported that the global-local model could

effectively solve the same class of free-edge stress problem as described in [8] and had

wider range of applicability.

2.3 Finite Difference Method

2.3.1 Pesudo Two-dimensional Analysis

Pipes and Pagano [l1] used the la~sical liheor , of linear elasticity to formulate fhe

problem of free-edge delamination of a strip under uniform axial strain. Allow ink for

material symmetries and uniform extension, the transverse components of displacement

were assumed to be independent of the longitudinal coordinate. The three coupled

elliptic equations for the displacement funi.tions were solved using a finite difference

solution technique to approximate the interlaminar stresses. Delamination was assumed

to be primarily due to the high shear stress near the free-edge and the interlaminar

stress field was found to be an edge effect which was restricted to a boundary region

approximately equal to the laminate thickness.

2.3.2 Three-dimensional Analysis

A three-dimensional finite difference analysis was carried out by Altus, Rotem and

Shmueli [121 to examine the free-edge stress field. The displacement equilibrium

equation was solved by using central difference method while for displacement or

traction-free boundary conditions as well as interfacial continuity conditions, either

forward or backward difference scheme was applied. Convergence of the solution was

11



expected providing a reasonable displacement f ield wvas assumed initially. Although a

complete stress field was available due to three-dimensional characteristics, an iteration

scheme could be a serious inconvenience.

2.4 Finite Element Method

In order to more effectively evaluate the high gradient stress field at the free-edge

of laminated ,omposites. the popular Finite element method has been applied b\

numerol, in estigators.

2.4.1 Displacement Method

\Wang and Crossman [13] used a very fine, constant strain triangular element grid

to model the laminate boundary region through a cross-section. The functional

dependence of the assumed displacement field was of the same type as in Pipes and

Paganos analysis [III. To overcome the difficulty of computational storage and time

limitation, the solution process adopted the so-called "sky-line" matrix storage scheme.

The results indicated that the interlaminar as well as inplane stress singular behavior

was highly localized in angle-ply laminated composite. A simplified method for

calculating interlaminar stress x-as proposed 114] wherein the stresses at the desired

layer-interface were evaluated by substructurinE the laminate with fewer numbei oif

effective layers. This reduced the number of laminar interfaces and facilitated initc

element calculation within fewer element

A quasi-three-dimensional finite element analysis was carried out by Raju and

Crew [15] using eight-noded isoparametric element. In ,rder to approximate the stress

singularities, polar mesh was introduced near the intersection of interface and free-edge,

associated with a so-called log-linear procedure to relate the steep gradient stress with

12



the radial distance from the singular point in the logarithmic coordinate. One major

drawback of this scheme is that the power of singularity has to be determined by

solutions calculated from finer polar mesh near the interface of the free-edge.

Whitcomb, Raju and Goree [16] further pointed out that the disagreement for both

magnitude and sign of the interlaminar normal stress distribution among various

numerical methods could be attributed to the unsymmetric stress tensor at the

singularity. In their approach too, the problem was modeled by eight-noded

isoparametric elements. It was concluded that finite element displacement models were

capable of giving accurate stress distributions everywhere except in the region within

two elements of a stress singularity.

In summary, we observe that in the conventional displacement-based finite element

formulation, evaluation of shear as well as normal stresses required expensive mesh

refinement near the boundary region to approximate the singular stress field. Even

then the actual stress distribution along the free-edge was generally not sufficiently

accurate.

2.4.2 Stress Method

Rybicki [17] used a three-dimensional equilibrium finite element analysis procedure,

based upon minimization of complementary energy, to solve the free-edge stress

problem. Due to the fact that the assumed stress state in the analysis did not contain

singular term, a finite rise in interlaminar normal and shear stresses near the interface

corner was observed for angle-ply layup. However, this method involved very iarge

matrices and was computationally expensive, and even at that did not yield a

continuous stress field.
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2.4.3 Hybrid Assumed Stress Model

In lan's hybrid model [29], stress equilibrium in the interior of the elements as

well as displacement continuity along interelement boundaries are ensured, but the

interelement stress continuity is satisfied only in a weighted integral sense. Followving

Pian's formulation, Spilker [18] developed a special hybrid element for the edge-stress

problem. In his work, the assumed stress field was made to satisfy exactly the

continuit\ ol tr;ation across interlayer boundaries as wyell as traction-free condifion,

along exterior planes of the laminate. This Was 'ound to be effective for sl ud " of

cross-ply laminates has ing a relatively simple stress field. It is difficult to extend this

procedure to angle-plv laminates because in these the complete stress field has to be

considered.

A special formulation of a singular composite-edge element was developee by

Wang and Yuan [19] based on the Boundary-layer theory [30] and the variational

principle of a modified hybrid functional. In the analysis, the singular hybrid element

was used in conjunction with displacement-based eight-noded isoparametric elements, and

it was reported to give satisfactory stress distribution near the free-edge. This method

is excellent for determining possible growth of delamination but would be awkward to

use to predict occurrence of delamination in an intact specimen. This is because

sometimes, it is hard to find the place in vhich stress singularity may occur.

2.5 Summary and Research Motivation

The analytical and numerical solutions discussed above for the free-edge stress

problem are summarized in Table (1). Some conclusions can be made at this point.
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Generally speaking, an analytical solution for the complete stress field is

extremely difficult. The solution procedure for the case of a multi-layer

system is not currently available.

2. Use of a finite difference technique suffers from geometric limitations.

Calculation of stresses at the interfaces or laminate boundaries needs to apply

additional techniques, such as iteration scheme. Even then the solution

generally lacks edibility.

3. Conventional displacement-based finite element methods are incapable of

predicting accurate stress fields particularly along element boundaries. Stress

equilibrium approach is apparently impractical. Use of hybrid element does

improve stress calculation but is applicable only to some special cases.

Application of singular element near the free-edge boundary apparently makes

the analysis too subjective. In order to have reliable predictions of

displacement and stress fields, it is necessary that the free-edge stress model be

able to approximate the real life situation as closely as possible. In other

words, the displacement and stress continuity conditions along with

traction-free boundary condition have to be exactly satisfied. Considering also

the generality and effectiveness of the analysis, the displacement-based finite

element approach with higher order interpolation function could conceivably be

superior to the other approximate theories.



Table 1: Comparison of Various Methods for Solving the FED Problems

Ref Author method of analysis calculated stresses

2 Puppo & Evensen Elastic approximation 7 a X.x y z y

3 Pipes & Pagano Approximate elastic solution 7 \)7Z

4 Pagano lodified higher order theory r7

5 !ang & Dickson Extended Galerkin's approach o Y

6 Hsu & Herakovich Perturbation technique ( Z 7

7 Tang & Levy Boundary Layer theory r a O 7 -
x, y z yz X7 XY

8 Pagano Reissner's variational a X a, y a

principle--mixed method

10 Pagano & Soni Global-local model ai (yrTzTzTI X

11 Pipes & Pagano Finite difference method a, y I 7

13 Wang & Crossman Finite element method: aTaT T.z T

constant strain triangle

Finite element method:
16 Whitcomb et al. 8-noded isoparametric O Z7 7N

element

17 Rybicki Finite element method: 0 \ Z 7 '
., y zyz Xz XY

equilibrium stress approach

18 Spilker Finite element method: oyrZTyz

hybrid assumed stress model

19 Wang & Yuan Finite element method: (T ,y y 7

Singular hybrid element
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SECrION III

VARIATIONAL FORMULATION AND FINITE

ELEMENT APPROXIMATION IN LINEAR ELASTICITY

3.1 Introduction

In this section, a \ariational formulation of three-dimensional elasticity is described

and its use as the basis of a finite element approximation is discussed. The treatment

essentially follows that in reference [31]. Variational formulation has been used as the

basis for direct methods of obtaining approximate solutions to boundary value and

initial boundary value problems. Traditionally, the approximation space is generated by

complete orthonormal sets consisting of eigenfunctions of self-adjoint operators. The

functions which are used to approximate the field variables are required to satisfy

certain continuity requirements over the whole domain. The finite element method,

however, offers an alternative route for generating the sequence of finite dimensional

approximation spaces. The region under consideration is subdivided into a finite

number of discrete elements, and the field variables are represented by functions w\hich

follow the same continuity condition only piecewise within each element. Some

significant differences between the finite element method and the traditional direct

methods include [311

1. The base functions have local support and are nonorthogonal.

2. The sequence of approximation spaces is ordered by refinement

3. The local support functions may have only limited smoothness

17



The support of each base function is confined to the neighborhood of a nodal

point and extends over the elements of the finite element approximation sharing that

point. Across interelement boundaries within the support and at the boundary of the

support, the function may have only limited smoothness. In a sequence of refinements,

additional nodal points, elements and base functions are introduced. The base functions

associated with each nodal point change with refinement, including a monotonic

decrease in support. Additional discontinuities might be introduced at each refinement.

Variational formulations and solution procedure for direct methods based on the finite

element approach must allow for these peculiarities of finite element approximat ion

spaces.

3.2 Boundary Value Problem

Consider an open connected region R in an euclidean space. OR is the boundary

of R and l its closure. A typical boundary value problem on R is defined by the set

of equations

Au =f on R (1)

Cu = g on OR (2)

where A is the field operator and C is the boundary operator such that

A: Dr-- VR !3)

C : l) dr- Vor (4)

VR, V., are linear vector spaces whose elements are defined on the regions indicated

by the subscripts. DR, DaR are dense subsets in Vr , VR, and denote the domains of A,

C respectively. DbR is the extension of DR i.e. any element u EDR has a unique

extension in DaR and every element in DoR is the extension of an element (not
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necessarily unique) in DR. For given fEVRI, gEVaR, the boundary value problem

consists of determining u EDR along with its extension in Da such that (1) and (2) are

satisfied.

3.3 A Variational Principle

Let the linear operator A be self-adjoint, i.e. there exists a nondegenerate, linear

Gateaux differentiable, bilinear mapping BR:DXVR -*S, where S is a linear vector space,

such that

BR(u,Av) = BR(vAu) + CaR(vu) u,v ED R n V R  (5)

Here, Ca(v,u) are quantities associated with the boundary 6R. Magri [32] has shown

that such a bilinear mapping can be constructed for every linear operator A. If the

boundary operator C is consistent [33] with the field operator A, ie, there exists a

nondegenerate, linear Gateaux differentiable, bilinear mapping BR:DaxVW--S, such that

Ca(v,u) = B,(vCu) - Ba(uCv) (6)

then, the linear Gateaux differential of

fl(u) = BR(uAu-2f) + B,(uCu-2g) (7)

vanishes if and only if (1), (2) are satisfied. Sandhu and Salaam [331 further pointed

out that even if the boundary condition is homogeneous, i.e. g = 0, the quantity

B,(uCu) in (7) must be included if the variational principle is to hold for the path

of Gateaux differentiation not satisfying homogeneous boundary conditions. This is

important for approximation in finite element spaces where the variation is introduced

as change in the nodal point value of the field variable and, consequently, the path of

variation may not satisfy the boundary condition or internal smoothness.
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3.4 Variational Principle for Finite Element Approximation

In the finite element method, the region R is approximated by a set of elements

Re; e=1,2 ....... ml such that

Re fRf =0 if e;ef (8)

m

lim U R (9)

The field variables are approximated hy functions which may not be sufficientily

smooth. lhuwever, oxer each element, ade(Lualte smoothness is assured. If R, represents

the interior of the e-th element and 6R,, its boundary, \e have [341

BRe (u,A 0 = 13Re (\v,A u) + CaR (v,u) (1o)

and

CaR(v,u) = BaR (v,Cu) - B aRe(uCv) (11)

Further define

m

fl(u) = E[BR (u,Au-2f) + BaR naR,(u,Cu-2g)] + B R,(u,(Cu)') (12)
e= 

e

where OR represents interior boundaries of elements and a prime denotes a jump. The

Gateaux differential

'I'

Avfi(u) =2 y[BR (vAu-f) + B  
,naR(v,'u-g)1+ 213 aR(v,(Cu)') (13)

vanishes if and only if (1), (2) are satisfied over each element and (CuY vanishes, i.e.

Cu is continuous across interelement boundaries. If there are actual discontinuities in

the interior of R, let

(Cu)' = g' over OR' (14)
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where g' is specified over 6R'. Then, if the union of intersection of element

boundaries covers R', the functional in (12) may be redefined as
m

.(1u)-~IIR (uA-2f) + (u o UCu-2g)] + B, (u,(Cu)'-2g') )

3.5 Linear Operator with Adjoint Splitting

Many physical problems can be written in the form of

Au = Iu +T T'Fu = f on R (16)

w here

F: WR-4V R (17)

T:WR-+XR (18)

E:XR-+YR (19)

f" : Yit-+V R  (20)

T' is the adjoint of T, i.e. B, RR such that

BR(uTv) = ER(vT*u) + C (v'u) (21)

Here BR:WRxXR-S and BR:WRXVR-.S. S is a linear vector space and BR, l are

continuous non-degenerate bilinear mappings. E, F are symmetric, i.e.

BR(uEv) = BR(vXu) (22)

% (u,Fv) = HR(VFu) (23)

Introducing e, a" through the equations

Tu - e = 0 on R (24)

_e-a =0 on R (25)

(16) can be written as
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Fu + T o = f on R (26)

Combining (24) through (26), these constitute the coupled system

e = 0 on R (27)

-1 0 0

If the inverse of E exists, let G=E-'. Then, combining (24), (25)

'Illt - 6o = 0 on R (28)

(26) and (28) are the coupled system

1 IJ {"}={f }  on P (29)

(29) is referred to as the complementary form.

For an operator with adjoint splitting, let the boundary conditions on u, a- be

Ciu=gI on SI OR (30)

C2 cr=g 2  on S2  OR (31)

The discontinuity conditions are

(Clu) =gt on S11 (32)

(C20-)' = g' 2  on S2  (33)

where S' and S are interior surfaces imbedded in the intersection of finite element

boundaries. C1, C2 consistent with T, T* implies the existence of bilinear mapping

Bs1, Bs such that

BR(u,Tv) = B,(vT*u) + B (v,C2u) - B (uCv) (34)

where S, S! are complementary subsets of boundary ORe of element e.
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The function governing variational formulation of (27) for finite element

approximation is

m

f (UEO) = E[3Re(uFu+T cr-2f) + BRe(cE-O-) + BRe(O',Tu-:) + BRe ns,(O',Clu-2g)]
e=1

+ [B C 02  g)] + B'(cr,(C u)-2g',) + B(u,(C2or'-2g',) (35)[Re ns2(uCo.2g92) 1 , 2 2

It is important to note that even if there are no interior discontinuities in the

physical problem or the specified boundary conditions are homogeneous, the boundary

and the discontinuity terms must be included to accommodate the nature of the finite

element approximation space [321

3.6 Principle of Minimum Potential Energy

The field equations for isothermal quasi-static deformation of anisotropic, linear

elastic solids, assuming no initial stresses and strains, are:

a) Equilibrium of stresses
or... + fj = 0 on R (36)

b) Kinematics

For small deformation, the strain-displacement relationship is

u(6.J) = Eli on R (37)

c) Constitutive relations

'ij - EijklE k (38)

on an open bounded connected set R contained in the three-dimensional Euclidean space

E. Here u, fl, 6, orip Ej, are, respectively, the components of the displacement vector,

the body force vector, the infinitesimal strain tensor, the symmetric Cauchy stress

tensor and the isothermal elasticity tensor. The range of indices is 1, 2, 3 and
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summation on repeated indices is implied. A subscript following a comma denotes

partial differentiation with respect to the coordinate, in the reference frame, defined by

the subscript. Parantheses around subscripts denote the symmetric part of the quantity.

Let the functions u1, eta, orj satisfy the continuity and differentiability properties

required in the equations of elasticity over every subregion Ri. Then, admitting

(ueEj,crij) as the 15-tuple of dependent variables, components of vectors and tensors

being regarded as ordered subsets in an n-tuple, (36)-(38) can be written as [33]

0 0 (s &+ A)
2 ik a j i Ui f ~k

0 h ijkk , 0 on R (39)

1(8.. -0-+ + ---.I) -1 00

2 8 ki 1  
k

Consistent boundary conditions for the problem are

-n ui = -n i  on S, (40)

cin i = j on S2 (41)

where the na are components of a unit normal to the boundary S, and the jump

conditions are

T -n ' on S' (42)

-(nji U -g' ji on S' (43)

Setting up the problem in inner product space, i.e. BR(uv)= fRuvdR, and defining

m

BR(u,v) = I:N(uv)R (44)
e=1

The basic functional corresponding to (35), allowing for relaxed continuity, is [331
nl n(UiCl,') = ( E . i -u o'... -2.. a U-2uf.+u or..)dR

uE IJ ij I~ I Ij 'J2
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+ f u-o'ijni--2t.)dS - fs1'crinju-2fi,)dS+f uf((on,)'-2g'2j)dS
S2 J JS 2

- f a.jn u)'-2g',j,)ds (45)s,

In using (45) as the basis for finite element approximations, it is not necessary for the

interpolants to satisfy any boundary conditions or interelement continuity. For no

jump discontinuities, g',j, and g'2j vanish. However, it is important to retain the terms

containing (orn,)', (niu,)' in the formulation.

Using symmetry property of the operator matrix, i.e.

fa R (-," = - fo a-.u,,i dR+ f ( ,ionuid + If scr,(niudS

+ fs u-(o'in-)'dS (46)
S2

to eliminate the term containing oyj from (45), the functional can be written as

n 2 o'i)e = f .E ejE ,kedR + 2 If Ro.j(ui,j-,E )dR- 2 R u f dR

-22f uItIdS-2f crinj(u,-fii)dS-2f !'ij(n ui)'dS (47)
S2  5,St - Stt

n2 is the modified variational principle with three independent fields proposed by

Prager [351 If u,, -,j are restricted to satisfy the last of (39), the strain-displacement

relations, Prager's modified principle of total energy theory is obtained

03 = fR eijE, i4Ek] dR ,dR-2f 2 ,I 4s-.f , ,n,(u,-od

-2f cr(nu)'dS (48)
SI
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(48) %%as also proposed by Pian and Tong [291 and is the basis of their hybrid method

with assumed displacement field. If the displacement field, u, is further restricted to

satisfy the displacement boundary condition (40) on S,, fl3 reduces to

a ,EijkCk dR-2 f uofdR - 2f uftdS -2 f I* (njudYdS (49)
R S2  S"t

If the finite element interpolations are chosen to identically satisfy displacement

continuity across Si, the last term in fl4 vanished and (49) becomes

JR kdR 2 JR -2f ,t dS (50)

The vanishing of the variation of fl, with respect to the displacement components u,

implies the satisfaction of equilibrium equations (36). This functional corresponds to

the classical principle of minimum potential energy which is customarily used as the

basis of the finite element displacement formulation of the elastostatics problems.

3.7 Assumed Displacement Finite Element Formulation

For the boundary value problem stated in (1) and (2), the solutions u to the

forcing functions f in general belong to L2, the space of square integrable function. L2

is a separable Hilbert space. However, u may be contained in a subset D of L2 such

that A, the linear operator, is defined on D. We assume that D is dense in 1 2  If

the set of functions {o , k=l,2....oo} is a basis in D, then any function uEL 2 can be

expressed as an infinite sum:

u = akO(51)
k=1
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A scheme to generate approximate solutions is to use a finite set of terms in the

infinite sum above. Thus, as an approximation

n

u E = akk (52)
k=1

The approximation process consists of an appropriate choice of n, 0. and the coefficient

ak. Several alternative procedures are available. The finite element method is a

special process of selection of finite subset of the basis 10,). The coefficients ak are

generally evaluated by requiring the approximate solution to satisfy a variational

principle.

The finite element idealization essentially partitions the spatial region R into a

finite number of nontrival discrete elements or subregions. The geometry of the

elements is defined by a set of points in space called the nodal points of the system.

Over an element m, let an approximation to u be u' such that

um -=Eak -k (53)
nk kt=1

or in matrix form, dropping the subscript n,

U = m}T{am} (54)

where {,m T is a row vector consisting of 0' as its elements and {am} is a column

vector of coefficients a '. Evaluating the function, and its derivatives up to a certain

order at nodal points, yields

{u') = [O']t {am) (55)

where {u"} is the vector of nodal point values of the function and its derivatives up

to the order selected, and I "] is the matrix of base functions evaluated at each nodal
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point. The rows and columns of [O]r are linearly independent. If square, the matrix

is invertible. Hence, we can write

{a'} = ([Qif )- ' {um} = [A]-' {um} (56)

where A=[AN

Substituting (56) into (54)

ur = [0r]T [A]' lumi = [Ofm]T {u'm (57)

where [On] can now be regarded as a set of interpolation functions relating nodal point

values of a function and its derivatives up to a preselected order, to the value at an

arbitrary point within the element m [36].

In applying the potential energy functional shown in (50), 60j is assumed to satisfy

the strain-displacement relationship, and the displacement field should satisfy the

prescribed displacement boundary condition on S,. Vanishing of the variation would

imply satisfaction of the equilibrium equations. As stated previously, in the finite

element method, the displacement u is approximated by interpolation functions and

generalized displacements at a finite number of nodal points of each element. The

interpolation function must be chosen in such a way that when the nodal point

displacements for two adjacent elements are compatible, the displacements along the

common boundary are compatible. Meanwhile, the interpolation function must also

satisfy the requirement that the first derivatives of the displacement field exist.

Based on (57), the assumed displacement over an element can be rewritten in

matrix form as

ru = ] (58)
rm 2
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where q"' is the column matrix of generalized displacements at boundary nodes of

element m which determines the inter-element continuity, and r' is the column matrix

of generalized displacements at nodal points either at the boundary or at the interior

of element m but which do not affect the interelement continuity requirements. The

corresponding strain distribution is

q
m

- ~ mTq (59)
l Ieq e r I

where q5' and 0,, are obtained by differentiating .0' and qbm with respect to the

spatial coordinates. Substituting (59) into (50) and expressing in the finite element

discretized form, we have [37]

=- ( r[ [Em] [lqdR -2 fRmT[qIr] 2q f ]Zf) dR5 M=1 JR.rJ q r -

T
-2f j q 0 Irn D1 T It) dR (60)

f s2i~lr ti mm

where

[Eml= matrix of elastic constants for element m

[,mf]= matrix of interpolation functions for the

body forces in element m

matrix of interpolation functions for the

prescribed tractions on the surface Sm of element m

The summation sign in (60) implies the direct stiffness assembly procedure, and the

vector frj is the vector of global displacements. 0.s can also be written as

M
l E({q T[ =  I {q') + 2 {rm}T[Km] {qm} + (im}T[K] {rm }

qq rq rm

m=1

2{Fm}T {qm }-2(F {rm}) (61)
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where

K [MI[Em]E4,f< d (62)
Kqq = [Req eq m

K f m m mT

Krq r] eq m (63)

m f (T

K= f [mI[Em ][$],rr dR (64)
,a m

in T f m T

Fr = f [] [4,f {f IdR m + f [km t [O]{tm} dSm (65)
q m nf sm q T m 

Fr=f [0:rn] [O.f ...dR+ [01 ][O'tm S} (66)

iRmS f 5S m

The displacements {rm} in element m are independent of displacements, {r'}, for i;dm.

The stationarity condition with respect to their variations yields

[Km ] {qm} + [Krm] {rm} - {F } 0 (67)

Solving (67) for {rm} yields

{rm) = [Km '({Fm) - [K-r] {qm}) (68)

Substituting (68) into (61) yields

M
a = Z({qm}T[Kml] {qtm - {Fm} T{qm} + Cm)  (69)

m=1

where [Km] and {Fm} are, respectively, the element stiffness matrix and the equivalent

nodal forces defined by

[Km] = [Km] -[Km ]NKr--- -[Km] (70)

q4 rq r{Fro}" =q} -[K rq]I [K r i' (F 1 (71)

Cm = -{F m) [K m {F m} = constant (72)
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fl s in (69) is given in terms of the generalized displacements {q} which are not

independent for different elements. Using global coordinates, (69) can be written as

0 s = {q)T[K] {q} - 2 {q}T{F} + C'm (73)

Taking the variation of this discretized form of the functional yields the system of

algebraic equations

[K] {q) {F} (74)

which can be solved for the unknown nodal displacement {q}. The matrix [K] is

positive definite, symmetric and banded. The process of eliminating the generalized

coordinates, {r}, from each element is called the static-condensation process [38]. The

introduction of these terms, which do not interfere with interelement compatibility,

results in an improvement in the satisfaction of the equilibrium equations within each

element. However, the satisfaction of the equilibrium equations along the interelement

boundary is still governed by the degrees of compatibility supplied by the interpolation

functions for the generalized displacements, {q}. The solution obtained represents an

underestimate of the true solution in the sense of energy [391
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SECTION IV

CONTINUOUS STRAIN FINITE ELEMENT

INTERPOLATION

4.1 Introduction

In the Finite element method, the displacement field is approximated )\

interpolation 'unctions and generalized displacements at a finte number of nodal points

which also define the geometry of the elements. To ensure continuous strain across

interelement boundaries, it is sufficient that the interpolation functions be such that

the displacement components as well as their first derivatives along the common

boundary are continuous.

Tocher and Hartz [40] pointed out that for plate bending analysis, continuity of

slopes of the plate displacement surface is necessary. The compatible cubic interpolation

functions developed by Tocher [40] and by Clough and Felippa [41], among others,

satisfy this requirement. For plate bending, the generalized displacements used were w,

the transverse displacement of the plate and its derivatives w , wy. lere, the

subscripts x or y denote partial differentiation with respect to the independent

variables x, y. Applying the same displacement interpolation scheme to the plane

elasticity problems [401, the corresponding generalized displacements were

u, u,, uy, v, v, v., the in-plane displacements and their first derivatives at each node.

Thus, continuity of strain between adjacent elements was ensured.
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Instead of' using a local Cartesian coordinate system in the derivation of the cubic

polynomial with nine coefficients for each displacement component in Tocher and

Hartz's work, triangular coordinates were used in the present fully compatible

quadrilateral element, following Felippa's [42] work on plate bending analysis. This

simplified the generation of various matrix relationships for the constituent triangular

elements. Tocher's [40] element used incomplete cubic polynomials. Felippa's elements

wkere based on complete cubic polynomials and were therefore selected for application to

the free-edge problems. These elements include locher's formulation as specialization.

Cubic expansion of the 9-degree-of-freedom conforming triangular element (LCCI'-9) for

both in-plane displacement components as used by Tocher [40] was extended to

quadrilateral element designated Q-15. Quadrilateral elements, Q-19 and Q-23,

assembled from LCCT-11 and LCCT-12 triangular elements introduced by Felippa [421,

were also redeveloped for the plane elasticity problems. The continuous strain elements

were used to analyze a pseudo two-dimensional free-edge stress problem similar to that

of Pipes and Pagano [11] for composite laminate coupons under uniform extension.

4.2 Interpolation Functions of Continuous Strain Elements

In the following. Felippa's [41,42] approach for deriving the plate bending

interpolation Functions is summarized. We use the same element name as Felippa's and

start with u instead of w for the plane elasticity problems. Similar derivations

applied to the displacement component v.
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4.2.1 LCCT-J12 Element

A complete cubic polynomial in twO variables is defined by ten independent

coefficients. The values of u, the x-direction displacement of the plane stress body and

its derivatives u,., uy at the three vertices of a triangle yields nine independent

quantities. To ensure continuity of derivative u, across element boundaries, it is

necessary that u, be known at some points other than the vertices along each of the

three edges. It is con\enhent to introduce mid-side nodes on each of the three edges.

This element then has twelve independent quantities atainst the minimum of ten

needed to completely define a cubic polynomial.

In order to use a cubic polynomial wvith continuous first derivatives in the interior

as well as on the element boundaries, Felippa proposed that the element be made up of

three subtriangles as illustrated in Figure (2). Fach subtriangle has three vertices and

one mid-side node to supply the ten independent quantities for defining the cubic

polynomial interpolation in its interior. The point 0 could be any interior point.

However, for simplicity of formulation, the centroid is generally used [41].

The nodal displacement degrees of freedom to be considered in the stiffness matrix

of the complete element (Figure 2) include the values of the in-plane displacement

components, u, v, along with their first derivatives u,,, u, .1 G=1,2,3) about the

x and y axes at each corner as well as the normal slopes at the three mid-side nodes

about axes perpendicular to these sides respectively, viz. u,,, us, uni6, and v,,4, vnS. vn.

After forming the expression of the cubic displacement patterns in the three

subelements, because of the common displacements imposed at the nodes, the in-plane

displacements of two adjacent subelements are identical along their juncture line. To

establish continuity of u, along the edges of the subelements, it is sufficient that u.
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Figure 2: Assembly of the LCUI,'-12 Plane Elasticity Element
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evaluated at points 7, 8, 9, mid-points of these edges, from adjacent subtriangles be the

same. These three conditions were used to evaluate the in-plane displacement u, and

its derivatives u., u. at the interior point 0. With the interior point thus condensed

out, Felippa [411 obtained a set of interpolation functions for the LCCT-12 element.

These define a piecewise cubic polynomial interpolation such that the in-plane

displacements and their first derivatives are continuous both in the interior of the

element and along the entire boundary of the complete triangular element. A more

detailed derivation procedure and the complete listing of the cubic interpolation

functions are given in Appendix.

4.2.2 LCCT-11 and LCCT-9 Elements

Assembly of three subtriangles results in the LCCT-12 element (Figure 3a).

However, the mid-side nodal points in this element are not desirable for programming.

They complicate the mesh generation procedure, increase the band-width of the

assembled equation systems, and require special identification in calculation of the

stiffness matrix. To overcome these difficulties, it may be desirable to develop a

special element without external midpoints. This can be accomplished by assuming the

normal slope to vary linearly along one or more sides [42].

With the elimination of one mid-side node, the five-node element is designated as

I.C(T-I (Figure 3b). Further imposing linear slope variation constraints on three sides

gives a triangle with three nodal points and results in LCCT-9 element as illustrated

in Figure 3(c). The LCCT-9 element is identical to the Tocher and Hartz [40] element.
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Figure 3: Compatible Triangular Elements
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4.2.3 Quadrilateral Elements

Elements of quadrilateral shape can be set up as assemblages of triangular

elements. Figure (4) shows quadrilateral elements built up from four I.C7l'-12,

LCCTY-11 and LCCT-9 elements. The quadrilateral element in Figure 4(a) has a total

of 23 degrees of freedom for each variable and was designated by Felippa as Q-23.

Using four .CCT-I1 or LCCl'-9 triangles, the Q-19 and Q-15 elements as shown in

Figures 4(h). 4(c) respectixelv are realized.

The qu drilateral element has interior nodal points not connected to the other

quadrilateral element in a finite element mesh. These points can be eliminated through

a local condensation process. Thus, the final quadrilateral element has 24 degrees of

freedom, corresp3nding to the two in-plane displacement components and their first

derivatives with respect to spatial coordinates x and y at the four corners of the

elements and an additional eight degrees of freedom corresponding to the normal

derivatives of each of the displacement components at the mid-side nodes. A.,uming

that the normal derivatives vary linearly along the edges of the quadrilateral, the

mid-side nodes can be dropped. This reduces the Q-23 to Felippa's Q-19 element with

12 degrees of freedom for each of the displacement components. It is a fully

compatible quadrilateral element, having a continuous cubic variation of displacement

and quadratic variation of strain both in the interior of the element and along the

entire boundary of the element, as well as a linear variation of normal slope along all

external edges. We note however that LCCT-9 and LCCT-I1 do not use a complete

cubic polynomial. For this reason, Felippa's LCCT-12 element based on complete cubic

interpolation was considered an improvement upon Tocher's [401 LCCT-9.
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(a) Q-23 (b) Q- 19 (C) Q- 15

Figure 4: Quadrilateral Elements formed from (a) l.CCT-12 (b) L.CCf-II (C)

LCCT7-9
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4.3 Application to the Free-Edge Stress Problem

Figure (5) shows a symmetric laminated comoxsite coupon under a state of

uniform axial strain. In this case, away from the ends, the transverse x--constant

plane displacement fields can be assumed to be independent of x. These assumptions

imply the following form for the three components of displacement [111

u(x,y,z) = e x + U(Y,z)

v(x,V,z) = \'(V.z) (75)
\(.v,)= WVy,)

\%here e,, is the uniform in phlne strain in the x-direciion and u, v, w are components

of displacement along x, Y and z axes respectively.

41



e.

0#

(a) Symmetric Laminate

z
h
-I -___

T _ _ _ _ _ _ _ _

L~2 b

(b) x=constant Plane

Figure 5: Geometry and Loading of Symmetric Laminates
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4.3.1 Finite Element Formulation

The constitutive relationship for linear elastic anisotropic material obeys the

generalized looke's law

o i = Cijr i,j=1,2,....6 (76)

where e, is namely the uniform extensional strain e.. Based upon the minimum

potential energy principle (50) and substituting various interpolation functions for

displacement. 1)od\ force and traction fields appearilwg in the governing functional (60).

a nodal force-dkplacement relation \\ithin each clement is expressed as

K u =R (77)

where R, represents the resultant external nodal force, K,. is the element stiffness

matrix which can be written as

= fvBimCmnj dV m,n=1,2 ....... 6 (78)

The range of i, j dfends upon the 'degree of freedom' of the element, B is the

displacement transformation matrix and V is the domain of the element.

Because of the longitudinal extensional strain is specified as constant, the

correspondin, term in the stiffness matrix can be separated from the rest and (78)

rewritten as

Ku = R R", (79)

where the range of summation on m, n is now 2, 3 ....... 6 and R' is the element

residual force due to uniform in-plane strain e., i.e.

ROf vBmC leodV (80)
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After forming the system stiffness matrix and nodal force vectors, the displacement

components can be obtained by solving the resulting set of linear equations in the

standard manner.

4.3.2 Higher Order Elements

For the free-edge stress problem, due to the fact that dependence of the

longitudinal displacement on the longitudinal coordinate x is made explicit, the three

displacement components are completely defined by three functions of two independent

trans\'ersc coordinates y and z as sho\\ n in (75). Thus, the compatible cubic

interpolation functions used for plane elasticity problems can be extended to the pseudo

two-dimensional model of a laminate coupon, and a continuous strain field along both

in-plane and transverse directions ensured.

Figure (6) shows the nodal displacement degrees of freedom considered in the

stiffness matrix for the complete triangular element. These included the values of the

in-plane displacement components u, v, the transverse displacement w, along with the

first deriviatives uy, u, VY v., wy, w, about the y and z axes at each corners i=1,2,3

as well as the normal slopes at the three mid-side nodes, viz.

u u un, ' , v w 5, W S, W . This is the LCCT-12 element but with total

of 36 degrees of freedom. Further assuming the normal slope to vary linearly along

one or all three sides, the LCCT-11 and LCCT-9 elements, with total of 33 and 27

degrees of freedom respectively, are obtained as specializations.

As described for plane elasticity, quadrilateral elements, designated as Q-23, Q-19

and Q-15, were set up as assemblage of four LCCT-12, LCCT-11 and LCCT-9

respectively. After eliminating the interior nodal points through a local condensation

process, the final quadrilateral element, Q-23, had 36 degrees of freedom, corresponding
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Figure 6: Free-Edge Stress LCCT-1 2 Element
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to the three displacement components and their first derivatives with respect to the

spatial coordinates y and z at the four corners of the element and an additional 12

degrees of freedom corresponding to the normal derivative of each of the displacement

components at the mid-side nodes. It is a fully compatible quadrilateral element,

having a continuous cubic variation of displacement and quadratic variation of strain

not only within the elements as well as along element boundaries, but also across

laminate interlaces.
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SECTION V

CONTINUOUS TRACTION FINITE ELEMENT

PROCEDURE FOR COMPOSITE LAMINATES

5.1 Introduction

In the continuous strain Q-23 element developed for the free-edge stress problem,

both displacement and ,,train are continuous along interelement as well as interlaminar

bounda ries. ]lowe\ver, the tractions calculated across the interfaces between different].%

oriented layers are discontinuous due to different orientation of adjacent plies. Also,

traction-free boundary conditions associated with the finite-width laminate coupon

cannot be satisfied. In order to remedy these two defects and make the numerical

model more representative of the real situation, it was necessary to ensure interelement

as well as interlaminar continuities of tractions and the traction-free boundary

condition along the free-edge. To accomplish this, nodal point degrees of freedom must

include some components of stress and exclude normal gradients of displacement which

will be different across interelement boundaries. This was implemented by

transforming the displacements and their normal gradients at each of the nodal points

of the Q-23 element to a mixed set of degrees of freedom which would be continuous

across interelement boundaries. These included both displacement and interlaminar

traction components. Appropriate displacement-stress relationships derived from the

constitutive laws were used. For this element, traction-free boundary condition could

be satisfied in a point-wise sense.
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The continuous traction Q-23 element still has cubic variation of displacement over

the element and retains continuity of displacements across interelement as well as

interlaminar boundaries. The strains as well as stresses vary quadratically within each

subtriangle of the constituent LCC'-12 elements of the quadrilateral. However, certain

components of strain are not continuous across interelement boundaries but interelement

tractions are. This correctly allows for possible differences in orientation of adjacent

laminae. If adjacent layers have the same stress-strain relationships due to identical

orientation, stress continuity will imply strain continuity as w'ell.

5.2 Derivation of Displacement-Stress Transformation

In the Q-23 element analysis, the number of nodal degrees of freedom is different

for the corner nodal points and the midside nodes. For this reason, derivation of

transformation matrices for displacements and their gradients at the corners of the

LCCT-12 element, and for normal ;radients of displacement at the midside nodes on the

element boundaries, is discussed separately in the following sections.

5.2.1 Corner Nodes

The strain-stress relationship for an orthotropic material expressed in the x-y-z

coordinate system is

E = S1 oj i,j= 1,2,.6 (81)

or in matrix form
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11 12 13 1(,

S "12 S22 S23 0 20 y

S S (3 00 Sz 13 23 33 36 z (82)

yyz 0 0 0 944 S45 0 1-yz

YXZ 0 0 0 s s5 0 Xz

Ixy 916 S26 S26 0 0 661 71Y

where S,j are components of the compliance matrix for monoclinic materials which

have symmetry wiih respect to x-y plane (Figure 2) and are defined as [43]

S1 =S 1 m +3 (2S+S )mn +S 22n
4

S 12=(S +S,)-2S ,2-,S(,.m n2+S 1 2

,3S m 2 +S$ 2

2 2+

S 6=[2S Im -2S 2 2n +(2S+S66Xn n-m2 )mn16 , 2 664

S2 2=S1 1 n 4 +(2S 12 +S66)mn 2 +S 22m4

523=S 3n 2 +S 23m
2

926=[2S I In 2_2S 22m 2 +(2S 1+s 66XM 2 n2)Imn (83)

S 3 3=s' 3 3

S36 =2(S 13-S 23)mn

S44 S 4 4 m 2 +S55n
2

945,=-S 44mn+S 55mn

S~S=S4 4 n 2+S5 5m 2

S6=64(S I I +S22-2S 12-$ 5 6 )m 2n 2+S66

where m=cosO', n=sinO', and
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S1 =EI S 1 2 - E2 S 1 3 =': 3

21 1 ' 22 E ' S3 E3

Ell1 E22 E 33 (84)
S_3_ V3 , S 3 23 1

E l3 E 3 2  EE 33

1 1 1
S 44=G 

, ' 55= G 13' $ 6 6 = G 2

2313 12

0' is angle of ply from global axis x to material axis 1, and I-L, Gi , i', (i,j,k=1,2.3)

are moduli of elasticity, shear moduli, Poisson's ratios, respectively, in material

coordinates.

Replacing the strain components by their corresponding displacement gradients, for

small strain theory, and rearranging the constitutive relation, (82) becomes

u 1 I1 12 16 13 0 0 .X

Vy 12 22 26 23 0 0 0-y

U Y 16 26 66 36 0 0 T xy (85)

Wz 13 23 36 33 0 0 0z

wy+V 0 0 0 0 4 545 ryz

u z  0 0 0 9S 4 -r

or symbolically

2 = l ) (86)
E2 D21 D2 2  " 2

where

UX z

{l}V {}=w +V

U U S (87)

X z

10,r 1ct2}=r
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and

2 S 2 0
[D1 1 S 2 S 22 S', [D 12]S 23

16 $26 66 36 (8

I=I13 S -3 S °3 
(88)

[D 2 1 ]= 0 S, [D22 0 4 4 S 4 5

0 0 0'S5

TIo relate the interlaminar strain components IE21 to their corresponding interlamim, r

stress components 1o., 1l}, \was eliminated through a static condensation process. This

yields

iE )=[S IUj (89)

where

{WE}={ D2 1 1 [D ] -1 11 (90)

[S=[D 22HD2 1 ] [D1 ]'[D12] (91)

The inverse of [D1], namely, the compliance matrix in plane stress case, can be written

explicitly as

[D,,] Q1 2 022 6  (92)

010 Q26 Qt)6

where
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0Q 1 =QIIm 4 +2(Q1 2 +2Q 6 6)M n 2 +Q22 n4

Q12=(QI I +Q2 2-4Q 66 )m 2n 2+Q 12(m 4 +n 4 )

io 6=-mn3 Q 22 +m 3 nQ,-mn(m 2 -n 2 XQ 1 2+2Q 66 ) (93)

Q22=Q1 n4 +2(Q, 2 +2Q 66)m 2 n 2 +Q22 m

iD2 6 =-m 3 nQ2 2 +mn 3 Q 1 +mn(m 2-n 2XQ 2+2Q 6 6)

0 66=(Q 1 +Q? 2-2Q, 2) r n 2n +Q 6 6(m 2-n 2)2

with

EQ1 =- "22
1- 21 1v22 12 12 (94)

-V 
V,

12 21

Substituting (92) into (91) and (90), (89) could be expressed as

wz-Blu\-B 2 v-B 3 u y 3X 0 0 a-o

wy +vz 0 =  
44 45 Tyz (95)

uz 0 U 45 55 rXz

where

BI=S1 3 QI 1 +5 2 3 0 1 2 +S 3 6 iQ 1 6  (96)

B2 =S 3Q12 +S 2 3Q2 2+S 3tQ2 (,  (97)

B3=S1 3Q1 (+S2 3Q2(. +S3((), (98)

and

X=BIS 1 3 + B 2 5 2 3 +133S36 (99)

The gradients of displacement appearing in the expression for interlaminar strains were

then written in terms of interlaminar stresses using (95), i.e.

u z = S45*yz +S55 7rz (100)

v = (w +v )-w S7 +s z+ rx-w (101)
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W =( -I u 2-B v -B3 u )+Bu +)I\. +13 u.

=(S 3 3-X)orz+B u.+132v y +B 3u ) (102)

Combining (100)-(102) with the rest of the displacement nodal degrees of freedom, u,

v, w, U, vY, wy, and noting that u.=eo, the applied strain loading, the generalized

displacement components at the corner nodes of the LCCT-12 element were related to a

mixed set of degrees of freedom as follovs:

I LI( 1 () ( ) (

IN ( 0 () o ) ( ) (

U U
V V V + (1 3

()7 1 0 1 0) ( () 00

vv  0 0 0 0 0 0 55 45 0 Vy 0 (0)v 0 0 0 0 0 1 0 0 0 w 0S[0 0 000 O$S Ss 00
Uz  Txz

z 0 00 0 0-1 S 0 yz  Bl

W 00 B3 B2 0 0 0 S33-x o"

or symbolically

{r=[G1]{r'+{R} (104)

B1 B2, B3, and X occurring in (103) have been defined by (96) through (99). Thus, at

each of the three corners in the I.C(T-12 element, we have three displacement

components u, v, w along with three inplane strain comx)nents, u , v , w., and three

interlaminar stress components rT., T 7, 0".
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5.2.2 Mid-side Nodes

In order to have traction continuity across interelement as well as interlaminar

boundaries, it is necessary that the three traction components calculated at the mid-side

nodes on the common boundary from two adjacent elements be the same. This was

accomplished by transforming the displacement normal gradients associated with each of

the mid-side nodes in the LCCT-12 element to three boundary traction components

through the following relationships.

Let x, and x', be tw-o right-handed Cartesian coordinate systems having the same

origin. Then the traction vector T. on the )laine with normal direction N, has

components t, and t', in the tw,:o systems. The two components are related through the

following transformation [44]

t'.=l.t (105)
1 11 J

with

1. .=e'.e (106)

where e',, e, are unit vectors in the two coordinate systems. The traction vector can

also be expressed in terms of stress components, that is

t =o7J, n (107)

with

n =cos(e.,N) (108)

Substituting (107) into (105)
t'.=1.t-l..O nk (109)

I ij j ij kj k

For the free-edge stress problem defined in a pseduo two-dimensional space [11],

the traction vector T at any point on the element surface can be decomposed into

three components. t,, i=1,2,3, in the x', coordinate system. Figure (7) shows these
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three traction components which indeed can be regarded as the out-of-plane shearing

stress o-, the normal stress or. and the in-plane shearing stress o-,... The relation

between xi and x', coordinates as shown in Figure (7) yields

1I=, 1 =0, 1 =0
11 ' 12 ' 13

121 0 , 1 22
M , 

1 23=n (110)
1 =0, 1 -n, I m

31 ' 32 ' 33

and

n =O. n,=m, n 3 =n (1l1)

vhere m=cosO, n=sinO and 0 is the angle bet\\een tle, t\\o cordinties. Suhstitutjn

the above quantities into (109), we have

t' 0 i==nT XY+nTrXz (112)

t'2 =o'nn=m ryT+2mn7yz+n2Ocz (113)

t 3=0- . =(m 2 -n 2 )rYZ +mn(r-c-Or) (114)

Here, for interlaminar stresses acting on the element boundary are nothing but the

traction field, y cr,,,,, cr, expressed in (112)-(114) indeed represent the three traction

components as illustrated in Figure (7).

The stress-strain relationship for the orthotropic lamina expressed in the x-y-z

laminate coordinate system is

II 1 12 1I3 o oC16E.

0 CC , 0 oC E
y 12 -2 23 26 y

o"0' {2 CC 0 0C ( 6
z _ 13 23 C33 6 Z (115)

yz  0 0 0 44  S4  0 Y

T z 0 0 45 55  0 .Y/
Tx Cb 26 C 36 0 0 C 6 6 Yx
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\,here (,, is the stifiness matriN for monoclinic symmetry with respect to x-y plane

and is defined as [43]

C1H =C,nm4 +2(C 2+2C66 )m2 n 2+C 2 ,n

C 12 =(C 1 +C 22 -4C 6 )m2 n2 +C 2(m4 +n 4 )

C 13C 13m
2+C 23n

2

"=- 4 )M 2 2 1 4

n ... +2(C 1+2C )m n +Cn2I 12 '

(- > (7 n +('.,ma
- i ' =( i

( mn H il 1 2 +2(' mn(m -n (116)
c'+ 2(, )mn( "-n

C 45 =(C 5-C44 )mn

c ss=C 55m 2+C44nn2

C 66 =(C11+C 2 2-2C 1 2 )m
2 n 2 +C(m 2 -n 2 )2

where, with m=cosO', n=sin0', again 0' is angle between the global axis x to material

axis 1, and

(-V( A) (V, +V v

-23 32 )11 c -- 31 2
A A

(1-v v ) (v +v, V)lC_,= C . (7 _ t ,
-1A 3 ' A (117)

(i-V , )l (v +v v A:
C12 1 33 . . .13 '22

CA 23A

C 4 4 =G 2 3 , C 5 5=G 13' C 6 ,=G 12

with

A=1-V 12 V 2 1 -V 2 3 V 3 2 - V"31 V 13-2v 2 1 V 3 2 V 13 (118)

(112)-(114) along with (115), gives
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m66mC nW nC4 S nC," nC
[a-nn m 2C +n2U'3 m 2 C2+n 2 C2 2mn('U 2nmnC 2nmn(

a2i 6 + ',30 22 +n 23 'mC44 2mV45 2n 44

a-J ( 36-C 26)mn (C 23-C 22)mn (m 2 -n 2 )c44 (M2-n 2)c 45 (M2 -n 2)44

u
Y

3'v mc em36 16 2- -
C, + -C " + m -l n2 t)e ' (119)

m 23 +n 3 + (m C ,+n'

(C3-,')nn W ((i-U 1)mne,,

\
/

(119) is the general relationship between traction components at the element mid-side

nodes and the corresponding displacement gradients. It is different for each element

midside node.

In order to relate the displacement gradients at the mid-point to the mixed nodal

degrees of freedom at the two ends defining the element surface, let j and k denote

the first and second cyclic permutations of i=1,2,3 (i.e. j=2,3,1 and k=3,1,2), the

projected dimensions and the corresponding boundary length are defined as (see

Appendix A)

Also, if the outward normal is defined as positive (ligure 8), the relation between

local and global Cartesian Coordinates is [42]

s}= a I & 1r (121)I, Ib I z-z J

Considering (121) and using chain rule of differentation, we have

u u s. +u On, a. b
--( - Th ~ u u -- u (122)

ay , 0s 0' On, 6S, I :3 1, ',+
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Figure 8: Local and Global Cartesian Coordinates
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(Ou u &s, + au an, b. a
UZ =( ) = -- U (123)

Oi+3 6z ,+3 as, az an, z 1 1j+3 1 1
-",+3

where ui.3 (i=1,2,3) denotes the tangential derivatives of u at one of the mid-side

nodes (Figure 9), which can be further interpolated from the displacements and their

gradients at the two ends of the corresponding element boundary, i.e.

a b 3 a. b
u =-- u.---u +---u +--u -- u +--Lu (124)
si+3 21 J 41. YJ 41, 'j 21, k 41. Yk 41 zk

Recalling (1W), we have

u S i +S T

Uzk =S5T \+ 4( 12 )

Substituting (124), (125) and (126) into (122) and (1230, we can express u,, u, at each

of the element mid-side nodes in terms of their corresponding normal derivatives un, as

well as the mixed nodal degrees of freedom at the two ends defining the segment.

That is
2

3a a ab a.b.
u =-- u-,u + S 7 + "S T

Yi+3 212 412 Yj 41 2 55 xz 412 45 yw

2

3a a a b a.b b
+-u ---- u + .r + - S S -- u (127)

212 41 4 - k 41- ' 1 "+3

3b ab b2  b
u - 2u+ "'u __._ S 'r ,-_2_ S s .
zI+3 21 2 Ji 412 YJ 41 2 55 x7 41 2 45 z

3b ab b2 b2 a.
--u k + "U , 8 7X -2 9 -- u (128)
2112 411 Yk 412 55 xZk 41 45 yZk I jni+3

Following the same procedure and considering (103), the transformation equations for

vy, v, wy, w at each of the element mid-side nodes are
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3a a. a.b a b. a.bI II i -

v -- V----v -- Sw T + ''S
y,+3 21 1 2 41 Y 41i 45 xzJ 412 44 yzj

2
3a. a ab. a.b. a.b. b.

+ v , ---v + S T + "S T (129)
21 2 k 

2 Yk 4 Yk 41 2 45 Xzk 41 44 yzk ]n+3

3b a b. b 2 b 2 b.2

v z = --- v + " v +- -2- i w -- ._ .-, S 45" X 2 ._ li 4 7412 41 - .. 41 2

I I3b ab b2 2) 2

----L , + ' v + -- 'X - ,~ (130))212 41 2 'k -2 xz 4 k 4Pk- ---- ",3

3a a ab a b a.b 3a
w , ' -J. f + iv S. ~ ,

YI+3, 2 1 2 J 4 1 2 3j 41 23 y +..#i 412 412332 k
I I I I I I

a ab. a.b. a.b. ab. bIu --to -+ " B e --- w (131)
41 2 Yk 4 1 2 3 Yk 412 Yk 412 33 Zk 21 lo 1. i+3

2 2 2
3b. a.b. b. b. b. 3b.

w '--w+. w --- B u -- Bv -I (S -X)o-w
zi+3 212 j 412 YJ 412 3 Yj 412 yj 41 2 33 z 21 k

I I I I I 1

ab. b.2 b.2 b2 b.2  a
41 k2 k 412 B k 412 Yk 412 (S Zk 2I I -wi+3

Substituting (127)-(132) into (119), the relation between the surface traction components

at each of the element mid-side nodes and the corresponding displacement normal

gradients is

Cr 'a
nxn

o = [T] i V + [T21 {r'},+3 {T I  (133)

ns +3 n i+3

where

61



2v( I 2
C +n 112

LI] m3C2 6 +mn2C3 6 +2mn2C4 5 m .,2 +mn C, 3+2mII 4 4

C3-C )m2n +(M2 n-n 3)C (C, -C, )m 2 n+(M 2n-n 3)c
(C626 45 23 2 44

(C 45 +C 36 )mn

2mi 2 nC44 + m,-n ;2 3 +n3C 3 3  (134)

(m 3 -_mn 2 v +WC - 3 )n2

Al h \. .u , v T T.7 T.I % u \ \\ u .V T,Cr V or , )T (135)

CA3 2 Bl I Ci ~ InI

2 2
c, 2 2 1 M4V, 22 v 2

= CrnB-inC+m n' )HA +mn'C +n2  e (136)
2 4423 233 1 12 '13

2 C 4 4 (Mn-mn )B 1 3 3 - C2 3 )m 3 nB 1+(C 1 3 -C1 2 )mn

with

b. a.(37
m---, n=--(17

and [Tj] is the product of the transformation matrix shown in (119) with the

following matrix [TA]
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-4j3a ) a I) .1 h
--- () () -- - 4) 4) - _ 4)

21" 412 41 1-' 4(
3a iti ) a 1 i1

21 2 41 41 2 41 4S 4 - 44
I I I

3a aib a b. a2  ab
o - II __ ' () () -( -X)

212 412 41 41 41 3

[[al = jjI

31) a b 1)4) (4 i 4 ) (J -i -, ... t_._ ()

21 -I2 ." 4 ' -"

3 1) a h ih ) a

21 I I " . -I21 41 2 4 I4 2

3a I 2-a- a ) a b)

211 411 41 4j 41

3I a. a b ah

() 0 0. --__ 0 0Z Li5 .L $ ()

2 2 1 4 41 41 41 .

311 ai 1b a
A, F 4

I I

31 i) a ) 1.
o 1_ ( 0 1 (S -) _ 4 4

22 4 412 4 41 ,

3b ab a b II V b
(4 -) I) -B4--) -0--- (S. --)

2F -IF4, 4 4IV -I

-) .I) d )

-- - 0) ( () (I -----2 -4) -- - -- L(, -\
2112 -11 4142" 4 -12I1

I I i I

(138)

Rearranging (133), the displacement-stres.% transformatons for the normal displacement

gradients al eal of, the mid -side luxes III the I( '( 1-12 element lh.
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U11 ,~ i~]  l11 33
I' 11 = ['I A i') I ' +3 3 (1 9

I i+3 nns + 3

or symbolically,

{rn}i+ 3 = [Hi{r'n i+ +[L]i{r' i+3+{S}i (140)

where

[I),=[r] 9' (141)

[I ] = -[,I, 'Pr] (142)

IS= -[r,], o''3 (143)

Here, [Il, denotes the transformation matrix which directly related the normal slope

quantities at the mid-point, i+3, to the corresponding surface traction components. [LI

can be regarded as the coupling matrix between the normal gradients and the mixed

degrees of freedom associated with the nodal points, j and k, at the two ends of the

boundary. {S), is the local effect resulting from the applied uniform loading e.

5.3 Finite Element Formulation

The discretized form of (73) can he rewritten as

M

!D= (iqn}rT[K ](q }-)-{q'i1}T 1F1}) (144)
ni= I

where [K"] is the element stiffness matrix, {F denotes the nodal force including the

local effect due to the uniform in-plane strain loading as shown in (80) for the

free-edge stress problem. {qm} is the set of generalized nodal displacement components

within the element m, and M denotes the total number of elements.
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In order to have both displacement and traction continuity along interelement as

well as interlaminar boundaries, assuming (144) is based on continuous strain cubic

displacement interpolation as in I.cCr-12 described in 4.3.2, the displacement-stress

transformation matrices derived in the previous section were imposed on the generalized

degrees of freedom. Combining (104) and (140), the generalized displacement

components in the I.C(7-12 element were transformed to the mixed type degrees of

freedom as l,,llo.ws:

1 1 P' (1145)

\\ here

[{] o o () o
) c]o () o o

o o [(]o o o

[ I"]= [i [l.]3  0 111)3 0 () (146)

0 [L]1 [L]I 0 [HI, 0

If-2 0 [L]2  0 0 [1112

IjI'})=RIR),1R }.{sR)S} , S} '}T  (147)

q'" ={u ,v ,w u ,v ,w ,u ,v ,w ,u ,\',,w ,u ,w ,u ,v ,w
1'I I' 3 v1 Y l 2' 2' 2' " 2 Y 2 Y 2 z2 '2 z2

3 ,'V V,W U *v ,3 V , .\ .' .% W I .\ .,W "u .V ,U ,v ,w 1 (148)

i~l' i- 1= - ill INv I'\k I Illv  \kv , \ 11 ,7 , (,tr ,i t ,\k ,(I ,v" ,\V 7 " f T ,t .11r ,u , 4 1
i 1 \I %'I 'I ' 2 "V2 .Y . ,c2 Uz 2  tA'

u ,3v , 'w ,r IT ,r YZ r a , 1( TA ,o , T 11 ( 1(1(IX' ll,l4( , ,Icn , } (149)

Each of the [L, matrices in (146) was divided into two parts to match the mixed

degrees of freedom in (149). In the finite element computation, this transformation

was implemented during the formation of each of the subtriangular element stiffness

matrix and load vector corresponding to the I.(1-12 element. Thus, due h,
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appearance of displacement and interlaminar traction components at the corners of the

triangle its \kell as traction components at the mid-side nodes, a cubic variation of

displacement and a quadratic variation of traction were ensured along element

boundary. More importantly, both fields are continuous across the common boundary

between two contiguous triangular elements. Substituting (145) into (144), we have

M

Q=E -!1q'"} T[.1' ]*1~jl)lll}T) [K ".. (IIq" } )uT~)(~u}[l~rI]T +JP II )T AFInh
2

it I

+ I 1l 2. (150) II

2

or

M

fl (( q"m}T[Km1{q'mp..Iq~nm1T{}+Cm) (151)

where

[in']=[r in] [Ktm] [T111 (152)

{R-m[Tn]TFTR-[1Tfl " ]j tm) (153)

C pt  1111 ~TziP-i P 1 :"I constant (154)

Using global coordinates, (151) could be v ritten as

f= I q)[_~q)('()C (15:5)

Taking the variation of (155) with respect to {q}) yields the system generalized nodal

force-displacement equilibrium equations

[f]{q1{R1(156)
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T'he displacement as well as interlaminar stress comlments were then obtained by

solving the resulting set of linear equations in the standard manner.

5.4 Calculation of Stresses

Solutions of the finite element system gives the three displacement components,

their tangential gradients along the element edges, rotation about the longitudinal axis

;nd interlaminar stress field at the corner nodes oF the Q-23 element, along with the

houndary tiraction compn ents at tile center point ol each of the Q-23 element surfaces.

ITo retrie\ve the rest of the displacement components at each corner node, the

transformation matrix used in (104) was reapplied to the calculated nodal point

solution. Having found the complete displacement gradients and hence strains, the

inplane stress components at the corner nodes of the Q-23 element could then be

computed using (115).

The interlaminar or interelement stress components at the mid-point of each

element boundary are merely the traction components directly produced by the solution

of the continuous traction Q-23 element provided a rectangular mesh is used in the

analysis. For determining the rest of the stress components, the normal displacement

gradients at mid-side nodes were recovered from the nodal point solution using (140).

Furthermore, the displacement and their gradients along the edge at the mid-point were

interpolated from the previously computed displacement components at the two ends of

the segment. Having transformed these displacement gradients from local to global

Cartesian coordinates, calculation of the remaining strain and stress components at the

mid-side of each of the element boundaries is direct.
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5.5 Boundary Conditions of' a Quadrant of' the Delamination

Specimen

For the free-edge delamination specimen, because of' symmetries in the laminate.

only o~ne quadrant of an x=constant plane was considered (Figure 2). Along the

boundary, either displacements or tractions are specified at each point.

5.5.1 Boundary Conditions Along Lines of Symmetry

S'~mmetry of loading as well as, geomietrv about the mid-plane implies that Iie

di,,pla enient fu nctions satisl'v the f ollow.ing conditionI

U(Y.Z)=UY'Z)(157)

W(.V,-Z)=-W(y,z) (159)

Using chain rule of differentiation,

-U (-Y,-Z)=U (y~Z) (160)

-V(y,-Z)=V(Y,Z) (161)

W Y(v,-z)=-W (y,z) (162)

Setting z=0 in (5.79)-(5.82), we have

W ',(v.,OfrU z(y,) v.)()o (164)

From (5.84), -yj 1 y,O)y,,(y,)=O. and consequently, for the layered orthotropic material.

IT7(y,)=T YZ(Y,0)() (165)

AlIso

(W -_V Xy,0) = 0
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Invariance under a rotation of 180 degree about the z-axis through the center of the

specimen implies

U(-y,z)=-U(y,z) (166)

V(-y,z)=-V(yZ) (167)

W(-yz)=W(y,z) (168)

(166) and (167) lead immediately to

U(O~)= \(< Iz)=O(169)

for all i., and con~el len t V

B% chain rule of differentiation, (166) yields

-W (-y,z)=W (V,z) (171)

Hence, for y--O

Wy(0,z)=O (172)

(170) and (172) imply y,,(O,z)=y,(0,z)=O. Hence, for the layered orthotropic material,

r z(O,z)=ryz(0,7)=O (173)

A Iso

(W,-\ O.Z)=o

C(omhining (163), (164). (165), (169). (172) and (173), along with U(0.0)=() in order

to prevent rigid-body displacement of the laminate, the continuous traction finite

element model for a quadrant laminate under consideration should satisfy the following

conditions along lines of symmetry

U(0,0)=U(0,z)=V(0z)=W(y,O)=W y(y,O)=W (O,z)=O (174)

r,(xv,O)=r (v,O)=r ,(O,z)=r (O,z)=O (175)
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5.5.2 Traction-Free Boundary Coniditions

T'he traction I ree bOUndarY conditions issociated %0 tli one-quadrant of' the laminated

specimen are

rX(y,H)=,r z(y,l1)=Ou,(y,H1)=O (176)

at the top surface, along with

a (Bz)~ (Bz)T 13,)()(177)

at t hc l.l !cral 11-n!t ediee. H ere 21 I) id 211 de n Itt the iotal w idt h and thick ness-

Ofse~ i\C 1,111i lmiaed '1ptC11lmcn .110 111 sUn te oniuous traction Q-23 model.

t. rCtiOnl Irtee boLa nda) ryConditions sho\\n in (176) .an IV Identical Ix satisf'ied f'or nodal

points on thle 0op su rice. I lo\wexer-, due to thle lack of in planle stress corn pon~len s its

nodal degrees of' f'reedom, onlY thle last condition show\n in (177) can be specifiedl at

those element corner nodes along the lateral f'ree-edge. To completely satisfy the

traction-free condition along the lateral free-edge, the following device was developed.

In order to enforce the remaining two inplane stress-free conditions in (177), it is

necessary to express these in terms of nodal point degrees of freedom. This results in

a linear relationship between the degrees of f'reedom at nodal points on the free edge.

Thte stress free c.ondition can be written explicitly as

(T LoC e , -- (178)

T e(= 16 \ v+ (179)

or -vmbo~licallv

e

1011C C r C 1
1 2322 26(18o)

I(26 11 it, 2t

U
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where C, are components of the stiffnes;s matrix defined by (116). Solving above

equation, the inplane strain comnonents U \ can be expre ssed in terms of

interlaminar normal strain w, by

I -L (181)

where

I (c 2 12 - C )1

III C U , Id

=-(C C --c C13

Susituig 12 into (1. 1 fo ww a ute eaeu n .t h

PI (182)
=21 V Ic, 2- -12 C 2 2 1

1=,:-(C_ (C -. .C

and

=22 1 66 1 26 (183)

Substituting (102) into (181) for w , we can further relate us and v s to the

interlaminar normal stress component or through the following linear relationships

u> =p O'+ P2e0  (184)

\ =q +cr +q 1 (185)

7\ here

22>H, s -x) (186)

p,=- -(l Ili'2B2-l121212+122Bl+121) (187)

q.- 22. l.l.i Il:2 2l~ ll I ) (18
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and

0 = 1 -12 ]1 :3-1, 1 2  (190)

Again, BI, B, 113 and X occurring in (186) through (190) have been defined by

(96)-(99). Thus, the variables associated with the nodal points of the free-edge in the

lateral continuous traction Q-23 element are no longer independent but related through

(184) and (185). Incorporating these linear relationships in the displacement-stress

transformations shown in (104) md (1 -1() or elemenil o;n he lateral boundarV imlplies

Satisfaction of the fracti lm freC h1u ndi.%r\ Od i ions (177). The transformation becomes

u' 1 () ()J () (1 (1 () (1 () W

u ()1 ( ) () () () U () P1  U (uy

y 0 0 0 0 0 0 0 0 q V, + q 2e (191)

w 00000 1 0 0 0 W Y 0

uz  0 0 0 0 0 0 S S4 5 0 7 xz 0

vz  0 0 0 0 0 1 S 45  4 0 Ty 0

w 00000 00 O r or r2e.1

where

r I  S 3.-+B2q+B13P (192)

r2 =11 2+l2q 2+.113 p (193)
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SECTION VI

ANALYSIS OF FREE-EDGE DELAMINATION IN

LAMINATE COMPOSITE SPECIMENS

6.1 Introduction

Continuous traction finite element formulation developed in the previous section

was applied to obtain an approximation to displacement as well as stress fields in a

free-edge delamination specimen. The analysis consisted of two parts. The first

consisted of solving four-ply symmetric laminates. The purpose was to examine the

credibility of the continuous traction finite element model by comparing the numerical

solutions with those from Pagano's analysis based on a generalization of Reissner's

theory. At the same time, the deficiency in using the continuous strain free-edge

stress model described in Section IV was examined. The second part consisted of

studying of edge delamination tendency in two classes of multi-ply laminates subjected

to longitudinal loading. For laminate specimens with stacking sequence of

[(0/-0)./90,2]S, displacement and stress fields calculated from the continuous traction

Q-23 element were compared with those obtained using an overlay procedure with

constant strain elements [451 and with experimental observation [46]. For the

[(0/-0)/90J laminate specimens, the continuous traction finite element code was used

in conjunction with some well known anisotropic failure criteria [47-50] to predict the

onset of transverse cracking and the onset of edge delamination in various laminate

specimens observed in experimental data [511 The purpose was to evaluate the

73



suitability of these failure criteria for application to the free-edge delamination problem.

Because of symmetries in the laminates, only one quadrant (Figure 2) was considered

in each case.

6.2 Four-Ply Laminates

In this section, analysis of two long symmetric laminate strips made of

iraphite-epo x\ materials, w\ith fiber orientations of' [45/-45] and [0.901., under unif'orm

inplane strain in the lonitudinal direction is described. The relation between laminate

width and thickness \\as 21)l -01 lol,\ inc 18]. In the analysis, each ply \\as

idealized as a homogeneous, elastic orthot ropic malerial. For comparison purpose, the

material properties assumed here following Pagano's work [8]

EI i 20X 1 O6psi

E22=Es3=2.1 x I6 psi

G 12=G 13=G 2 3=0.85x 1 0 6psi

V 12= I3= V 23=0.21

The subscripts 1, 2 and 3 correspond to the longitudinal transverse and thickness

directions respectively. A 144-element model as shown in Figure (lOa) was used to

discretize a typical x=constant plane. Numerical results based on the continuous

traction Q-23 and continuous strain Q-23 elements were compared with Paganos [8]

analytical solution.

Figures (11) through (23) illustrate comparisons for both stress and displacement

fields at specific locations for the angle-ply and cross-ply laminates using different

solution techniques. The value of N in these figures corresponds to the number of

sublayers used in Pagano's theory. Thus, N=6 indicates that each physical layer of

thickness h was modeled by three sublavers each of thickness h/3, while N=2 denotes
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(a)

(b)

Figure 10: 144-Element Mesh
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that each physical layer is treated as a unit [81. Also. the calculated displacements and

stresses were normalized by the applied uniform strain loading e. which has been

taken as unit in the present analysis.

6.2.1 Angle-Ply Laminate

Figures (11) and (12) show the distribution of or, and r., along the width of the

laminate at the center line of the top (45 degree) layer. The results obtained usin,

the continuous traciion Q-23 element agreed quile \\ell with those of Pagano's \Th

solutions a ross the entire \\idtli of the laminate.

A comparison of the shear stress (r,,) distribution along the interface of the

45/-45 layers (Figure 13), indicated that the continuous traction Q-23 solution had

sharp rise toward the free-edge similar to Pagano's solution with N=6. Satisfactory

agreement was observed between these two solutions for stress across the width except

at the free-edge boundary where continuous traction Q-23 somewhat underestimated the

singular stress. Figure (14) shows the ,hrough-thickness stress distribution of [,

calculated from both continuous strain and continuous traction Q-23 elements at the

free-edge of the laminate. Very close agreement was generally observed between these

two solutions throughout the thickness. Also, at the interface of the 45/-45 layers.

continuity of the interlaminar shear stress was ensured for both cases. This is because

of the rotational symmetry about z-axis in the particular angle-ply laminate considered.

The singular behavior of r,. which is highly localized at the interface between 45,/-45

layers, is noticeable. The distribution of o', along the interface between 45' and -45'

plies, which was not indicated in [81, will be discussed in the next section.

For the axial displacement distribution across the width of the top surface,

continuous traction Q-23 results compared well with Pagano's N=6 solution (Figure 15).
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Figure 11: Distribution of X -stress Along Center of 'Fop La yer (45 degree)
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Figure 12: Distribution of NY-stress Along Center of Top Layer (45 degree)
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Figure 13: Distribution of XZ-stre.s Along 45/-45 Interface
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(CONTINUOUS TRACTION

-PAGANO (N=6)

C-

-C)

oCD-

0)

C'J
*0-

0)

CE - 0. 20 0.410 0.60 0.80 1.00

DISTANCE FROM CENTER LINE X/B

Figure 15: Axial Displacement Across TFop Surface of [45/-45T. Laminate
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Figure (16) shows the through-thickness distribution of axial displacement based on

continuous strain as well as continuous traction Q-23 elements at the free-edge of the

laminate. Again, these two solutions matched well throughout.

6.2.2 Cross-Ply Laminate

Distribution of o. along the width on the central plane of the [0/901 laminate.

shown in Figure (17). indicates a sharp rise near the fret-edge boundary. &olution

olained Irom the cntinuILIS tl'lCion Q 23 clemcni nearl" coincided with Pagano's \ o

solution over the entire width of the laminate.

Iigure (18) shows the variation of ur, along the interface between the (Y and ()o

plies. Due to the presence of the discontinuity in elastic properties, a singular Stress

behavior would be expected at the free-edge. On the boundary, result from the

continuous traction Q-23 element had a steeper gradient than that of Pagano's theory.

Apparently, one possible reason for this discrepancy is that, in Pagano's analysis, each

physical layer could be modeled by at most three sub-layers. However, in the finite

element analysis, the thickness was divided into eight elements. If a coarser

discretization were to be used, say 4x18, a, calculated from the continuou traction

Q-23 element would possibly agree quite well with Pagano's solution at the free-edge

interface. Figure (19) shows the influence of through the thickness refinement of

mesh on or. Figure (20) shows through-the-thickness distribution of o, at the

free-edge of the laminate. In the vicinity of the interface, the continuous traction

Q-23 element, enforcing continuity of a. at the interface between differently oriented

layers, gave a stress distribution quite different from that given by the continuous

strain Q-23 analysis. Away from the interface the two sets of results were close.

Also, the interlaminar stress cT, was observed to have a maximum value in the interior

82



oD CONTINUOUS TRACTION

ACONTINUOUS STRAIN

LUJ
:

Lf)

LUJ

-)

LU-

LUJ

c)

-011 -000 0.1 0.80
m RXIAL UISPLRLEMENI U

Figure 16: Through-Thickness D~istribution of Axial Displacement at the
lFree-Edge of [45- 45J3 1Laminate

8 3



(CONTINUOUS TRACTION

-PAGANO (N=6)

)

03

0

Qu M:

V )....0 ..

t t

0.00 0.20 0.140 0.60 0.80 1.00
DISTRNCE FROM CENTER LINE T/B

Figure 17: Distribution of Z-stress Along Central Plane of [/90)SLaminate

84



(CONTINUOUS TRACTION

-PAGANO (N=6)

1)

0

Li-)

C3

)

I--

'0.00 0.20 0.140 0.60 0.80 1.00
DISTANCE FROM CENTER LINE V/B

Figure 18: Distribution of Z-stress Along 0/90 Interface

85



CONTINUOUS TRACTION (8*18)

+ CONTINUOUS TRACTION ('4'18)

SCONTINUOUS TRACTION 12X18)

-PAGANO (N=6)
C0

0

CI)

CI)

14
'0 .00 0.20 0.40 0.60 0.80 1.00

OISTRNCE FROM CENTER LINE '(/B

Figure 19: Effect of Mesh Refinement on the Z-stress, Distribution Along
0/90 Interface



(CONTINUOUS TRACTION

ACONTINUOUS STRAIN

Ld

L)

Lku

Lic

Ac)

D
r)

LL
LU

cr, C)

cb.0 0'.00 0.20 0.'40 0.60 0.80
M Z-STBESS/ex 10-b S p3)

Figure 20: Through-Thickness Distribution of Z-stresss at the Free-Edge of
(0/90]5 Laminate

87



of the 9 0)-deg laer closer to the interface with the top layer. However, in both cases.

the solutions displayed oscillatory patterns near the interface. This could be due to the

finite element mesh used being not fine enough to approximate the steeply varying

stresses associated with abrupt change of material properties.

Values of T, along the interface between the [0/90]t layers, calculated from the

continuous traction Q-23 element (Figure 21), showed satisfactory agreement with those

calculated by Palgaiio. This is beC;Iuse the continuous traction Q-23 element exacd lv

satisfies the traction-free boundari- condition similar to Pagano's theory. llowever. an

oscillator.\ error was observed near the free edge. Apparently, further mesh refinemcnt

along the v-direction is required near the free-edge in order to approximate the singular

stress behavior. Figure (22) displays through-the-thickness stress distribution of r,,

calculated from both continuous strain and continuous traction Q-23 elements at the

free-edge of the laminate. Apparently, satisfaction of the traction-free boundary

condition associated with the continuous traction Q-23 element represents an

improvement over the continuous strain Q-23 element.

Comparative results for the variation of transverse displacement along the top

surface of the [0/90]1. laminate are shown in Figure (23). Excellent agreement was

observed between results using the continuous traction Q-23 element and Pagano's N-2

solution.
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6.2.3 Effect of Traction-Free Edge on the Solutions

In order to investigate the effect of requiring the satisfaction of a traction-free

boundary condition on the finite element solutions, the continuous traction Q-23

element was employed with only the requirement that Ty.=0 along the lateral

free-edge of the four-ply laminate specimens. In other words, the displacement

constraint conditions developed in (188) and (189) used to specify the in-plane

stress-free lxundarv conditions were nol imposed in this model. For convenience in the

lotlloving comparisons, this is designated as continuous traction (partial).

Ilgure (24) shows the distribution of r along the interface of the 45/-45 layers.

Solutions calculated from the continuous traction (partial) had a steeper gradient in the

vicinity of the free-edge than that of previous continuous traction Q-23 element. A

similar observaticn is made for the variation of o at the interface of [0/901 laminate

(Figure 25). Thus, it is concluded that the nonimposition of the conditions

01,=O and 7,,=O would overestimate the magnitudes of the interlaminar stresses on the

interface near the free-edge. However, the nonsatisfaction of these two traction-free

boundary conditions had no significant effect on the displacement field in the laminate

specimens. Figure (26) shows the solutions, for axial displacement distribution across

the width of the top surface in the [45'-45]. laminate, obtained from the continuous

traction (partial) and from the continuous traction Q-23 element which satisfies all

traction free conditions at the free-edge.
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6.2.4 Effect of Mesh Refinement

The analysis of the four-ply laminate specimens was originally carried out by

using the continuous traction Q-23 element with a uniform 80-element model as shown

in Figure (27). However, for reliability of results, the finite element mesh must be

refined in regions of steeply varying stresses. This results in the present analysis

using the 144-element model which indeed was obtained by dividing the two elements

closest to the free-edge in the 80-element model into 1) elements along the v-direction.

To study the effect of mesh refinement on the continuous traction finite element

solutions, comparisons were made for the stress distributions in the four-ply laminate

specimens between the uniform 80-element and the locally refined 144-element models.

Figure (28) shows the distribution of r, at the interface of [45/-45],. laminate

based on the 144-element model. A steeper gradient of r was observed on the

boundary as compared with the result using 80-element model. A comparison of o.

distribution along the interface of the 45/-45 layers, indicates that the 144-element

model had a compressive finite maximum value at the free-edge rather than a tensile

quantity from the 80-element model (Figure 29). This indeed has demonstrated the

inappropriate sign of o, shown in Figure (1) based on the perturbation technique as

well as finite difference method. For variation of or, along the interface of [0/90,

laminate, Figure (30) indicates that a singular stress behavior was properly reproduced

by the 144-element model and did not show well in the results based on the

80-element mesh.

Use of 144-element model might still be insufficient to approximate the singular

stress behavior. One example is the r,, distribution, which had an oscillatory pattern

near the free-edge along the interface of [0/901 laminate, as mentioned before. To
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Figure 27: 80-Element Model
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overcome this, a more refined mesh (208-element model) obtained by further dividing

the two elements closest to the free-edge in the 144-element model into 10 elements,

was used in the analysis. Along with the results calculated from 80- and 144-element

models respectively, Figure (31) indicated the improvement of the 7Y distribution along

0/90 interface over the boundary layer region as more refined elements were used near

the free-edge. However, regardless of mesh patterns used, there was an oscillatory

error in r, in the two elements, next to the free-ede.

Figure (32) shovs through-the-thickness distributions of o- at the free-edge of

[0'901. laminate based on the 1 44-element model but with finer mesh near the

interface (Figure lob) and its refinement (288-element model) in the thickness direLtion.

It is observed that the oscillatory error near the interface was reduced by using the

refined 144-element model and was nearly disappeared under more refinement over the

laminate thickness. Meanwhile, the maximum value of o, within the 90-degree layer

was moving closer to the 0/90 interface.
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6.3 Free-Edge Delamination in Multi-Ply Laminate Specimens

Analysis of the four-ply laminate specimens described in the previous section

demonstrated some validity of using the proposed finite element procedures in solving

free-edge effect problems. Both continuous strain and continuous traction Q-23 elements

had similar prediction on the displacements and inplane stress distributions, which also

compared well with Pagano's analytical solutions. However, discrepancy between

continuous strain and continuous traction finite element models was apparent for the

interlaminar stresses near laminate interfaces between differently oriented layers or near

the traction-free boundary. Due to the fact that stress continuity across interlaminar

boundary as well as traction-free boundary condition are exactly satisfied in the

continuous traction Q-23 element, solutions obtained from this approach were expected

to be more reliable than those from the continuous strain Q-23 element. In this

section, application of the continuous traction Q-23 element to investigate the free-edge

effect as well as initiation of edge delamination in the multi-ply laminates is described.

6.3.1 Analysis of [(O/-O)m/9Oy Is Laminates

Four types of laminates with predetermined fiber orientations [461 were used in

the present investigation. These are

Type Stacking Sequence Width Ply thickness Plies

A [(49.8/-49.8)5/90,, 1.0 in 0.00506 in 22

B [(30.8/-30.8) 5 /90], 1.0 in 0.00508 in 22

C [(25.5/-25.5)5/90], 1.0 in 0.00505 in 22

D [(47.9/-47.9)0o/90]s 1.0 in 0.00499 in 42

The material used in the study was AS4/3501-6, graphite-epoxy, and the elastic

constants were [46)
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=19.26X 0X6psi

F2 2 =1.32XO'psi

G 2 =0.83X1 )psi

v 1 2 =0.35

All the specimens have been investigated both analytically and experimentally at

the AFWAI-/AFFDL [46]. The Delamination Moment Coefficients (DMC) were derived

and used to evaluate quantitativel the delaminalion tendency of the laminates. Also,

generalized constant strain element \\:as applied to analyze half of the width of the

laminate speLimens. In the experimental aspect, various techniques including Transxerse

Strain Gages, Cracked Silver ink Instrumentation and Acoustic Emission Instrumentation,

etc. were used to determine the onset of delamination and to validate the analytical

resu I ts.

6.3.1.1 Numerical Evaluation

A 154-element model shown in Figure 33(a) was used to discretize one quadrant

of a typical x=constant plane in the laminate specimen Types A, B, C, and a

294-element model (Figure 33(b)) was used for speicmen Type D. Each ply was

modeled by a single element through its thicknes. Interlaminar stress field within

various laminate specimens for an applied longitudinal average stress of' 100 psi were

computed.

Comparisons of o% distribution along the mid-plane of various multi-ply laminates,

(Figures 34-37) indicate that the continuous traction Q-23 solutions had sharp rise

toward the free-edge similar to constant strain element solutions [461 Satisfactory

agreement was generally observed between these two solutions for stresses in the

vicinity of the free-edge except on the boundary where the stress calculated using the
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Q-23 element was distinctly less than that from the constant strain solution.

However, the cr values calculated from the constant strain element were extrapolated

from the interlaminar stresses at z--O obtained by Lagrangian interpolation of the o-.

values at the element centroids. This is unlike the continuous traction Q-23 solution

where a,, at the free-edge was directly calculated as nodal degree of freedom and

would be expected to be more reliable.

Iigures (38)-(41) show the through-the thickness stress distributions of o-, and 7,

calculated from continuous traction Q 23 element at the free-edge of various laminate

specimens. It is observed that for the same applied axial stress, specimen 1) had the

largest value of normal stress a> at the free-edge, followed by specimens A, B and C.

Figure (42) illustrates this. The slope discontinuity of a, at the interfaces of the

free-edge shown in Figures (38)-(41) was possibly attributed to the material as well as

geometrical discontinuities in that region. Figure (43) indicates that much smoother a-,

distributions through the laminate thickness were recovered within the angle-ply

laminae at a small distance from the free-edge. In fact, with further refinement along

the free-edge, the solution of o, on the free-edge is even better. Figures (44)-(45)

show the solution for oa, at the free-edge and at y=0.495 for specimen A with each

edge element being refined into four elements along V direction. Also, figure (46)

shows the functional dependence of longitudinal stress cr as well as interlaminar

normal stress r on the fiber orientation, respectively, for the [(0/-0)/90]1 laminate

under the same applied loading. The ordinates of these curves are the respective

values of a, and cr at the intersection of the mid-plane and traction-free edge of the

laminate. Results obtained from the continuous traction Q-23 element indicated that

both cr and a, attained their maximum values approximately in the fiber orientation

i~uiii i• Nal Ill i ill



0 = 300.

The shear stress 7,. distributions were similar for these specimens, and their

magnitudes are relatively smaller than the maximum normal stress o-,. However, the

existence of T., evidently reflected a defect of the numerical model adopted in [46] in

which the delamination specimen was treated as an axially symmetric problem in

which T.,,. was inherently assumed to be zero throughout the laminate thickness. It

was noted that o" distribution had a slope discontinuity at the mid-plane surface

within the 90-degree layer. This does not appear to be reasonable for the present

symmetric laminate specimens. Presuming that this was associated with the use of a

single element through the thickness of 90-degree layer being insufficient to

accommodate the mismatch at the interface between angle-ply and cross-ply laminae, a

study was carried out refining the mesh near the midplane. Figure (47) shows the

dramatical improvement of o, distribution near the mid-plane surface of specimen A

as increasing number of elements was used in the discretization of 90-degree layer. At

the same time, the maximum value of o-, in the interior of the transverse layer was

observed to move closer to the interface with the angle-ply layer. Again, if both the

90-degree layer and the free-edge elements were refined, the improvement of or, was

not only on the 90-degree layer but also on the entire laminate. Figures (48)-(49)

show this improvement.

Comparison of the interlaminar shear stress 1-,2 at the center line of 90-degree

layer along the width of various laminate specimens are shown in Figures (50)-(53).

Solutions from both methods indicate that T . approached finite maximum values in the

vicinity of free-edge yet the traction-free boundary condition could only be satisfied by

using the continuous traction Q-23 element. The maximum values of T., from the
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two models were comparable. The constant strain triangular element approximation

departed significantly from the Q-23 solution in the vicinity of the free-edge. This

could largely be due to the nonsatisfaction of the traction-free boundary condition

Figures (54)-(57) illustrate through-the-thickness stress distribution of 'y. along center

line of the second element from the free-edge for various laminate specimens. The

reason to choose this site for comparison was because of the singular stress behavior

being displayed in the finite element discretization for both methods (Figures 50-53).

A close agreement was generally observed between these two .solutions. The continuous

traction Q-23 analysis show that the maxinum T, occurred at the interface between

the negative angle-ply and the 90-degree layers for all the specimens. The constant

strain element does not have the capability to predict this. It is also noted that for

the same applied axial stress, specimen D has thc, largest value of r, followed by A,

B and C, similar to the observation for or.

Table (2) shows the values of interlaminar normal stress o, at the interface of

the free-edge for laminate specimens A, B, C and D based on constant strain element

and continuous traction Q-23 element, respectively. The ratios of the normal stresses

o-, to the relatively minimal value among them are 2.11 : 1.32 : 1.0 : 2.47 for

constant strain element, and 2.12 : 1.33 : 1.0 : 2.39 for continuous traction Q- 2 3

element. Thus, the normal stress ratios for specimens A, B, C and 1), calculated from

these two finite element schemes are comparable with each other.

Figure (58) shows exaggerated views of the displacement fields based on the

continuous traction Q-23 element in specimens A, B and C. Figure (59) shows the

distortion of Specimen D. The maximum displacement in the y-direction calculated

from both constant strain element and continuous traction Q-23 element shown in
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Table 2: ComipariSons of' Ielarnihiation TenidencY for Various Speimens

(unit :psi)

Classification Specimen A B C D

Value 107.74 67.65 51.12 126.22

c from Constant
Strain element

Ratio 2.11 1.32 1.00 2.47

Value 82.07 51.5.4 38.68 92.43
a. from Continuous

Stress Element

Ratio 2.12 1.33 1.00 2.39

Nlote Ratio-

1 34



(a) Undeformed Model of A, B and C Laminates

(b) Deformed Model of A Laminate

(c) Deformed Model of B Laminate

(d) Deformed Model of C Laminate

Figure 58: Finite Element Models of A, B and C Laminate Specimens
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(a) Undeformed Model of D Laminate

(b) Deformed Model of D Laminate

Figure 59: Finite Element Models D Lamiaate Specimen
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Table (3), were found to be in reasonable agreement for all these specimens. Also,

from these figures, it is observed that under the same applied axial stress, specimens D

had the largest distortion near the free-edge, followed by laminates A, B and C in

descending order. In other words, specimen D had the greatest tendency for edge

delamination among the four specimens, and the delamination would set in at the

lowest applied axial stress. This again confirms the prediction based on the

interlamina'r normal ,tress T which had the lIfrgesI values for specimen D as showvn

in Table (2). Based ul>on above analysis, \we conclude that both the distortions and

the values of normal stress a-, near the free-edge of the specimens calculated from the

continuous traction Q-23 element are consistent with those of the constant strain

element [46] which is much more economical to implement.
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Table 3: (7omparisons of Maximum 'ransverse l)eformation for Various Specimens

( 10/- in)

Classification Specimen A B C D

Value 0.1309 0.1032 0.0829 0.1935
Constant
Strain Element

Ratio 1.5789 1.2448 1.00 2.3337

Value 0.1171 0 0888 0.0704 0.1638
Continuous
Traction Element

Ratio 1 66SI 1.2619 1.00 2.3274

fote : Ratio-
V13
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6.3.12 Analytical-Experimental Correlation

An experimental study was conducted at AFWAL/AFFDL [46] to validate the

analytical results. Part of the test results are summarized in Table (4), which gives

the specimen type, strains, and stresses for the initiation of edge delamination

determined by transverse gages, silver ink, acoustic emission and visual observation.

The table also contains average axial stress for initiation of edge delamination

calculated From the continuous traction Q-23 element. The average initial delamination

stresses for laminates A. B. and C \ere found to be 19.2. 23.3 and 26.4 (ksi).

respectively [45]. The corresponding finite element solutions were 15.883, 25.817 and

29.935 (ksi). To calculate these values, the nodal axial stresses within each LCCI-12

triangular element had to be recovered from the stresses calculated along the boundary

of Q-23 quadrilateral. The axial loading applied on each triangular element could then

be computed by integrating the nodal stress values over each triangular area. Having

assembled the element axial loading over the whole system, the average axial stress

was obtained by dividing the total axial loading by the total cross-sectional area.
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Table 4: Experimental Results 'or Various Laminate Specimens

Laminate Specimen A B C

Axial Strain

10 -6 6099 3300 2900

Initial Matrix Cracking Stress
( ksi ) 15.5 21.7 25,1

Gages 20.4 23.7 22.1

Initial Silver Inh 17.2 24.6 24.9
Delamination Acoustic
Stresses Emission 19.2 23.2 26.4
( ksi )

Visual 18.1 23.5 25.9

Average Stress Calculated
from Continuous traction Q-23 15.883 25.817 29.935
element (ksi)
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6.3.2 Delamination of [(O/-)2/90]s Laminate

A sequence of tests had been conducted [51] to monitor the material damage in

[(0-0)/901 laminate specimens under incremental loading. The value of 0 were

50
, 150, 250, 350, 45°.  The material considered here was T300/5208 graphite epoxy

with the following elastic constants:

I- =22x 101'psi

1E2=l.54x10(' psi

G 126 23 = '0.81 X10"psi

V I2=-V', 3=0.28

The thickness of the ten-ply laminate averaged around 0.06 inch with width equal to

I inch. All these laminate specimens had also been analyzed [51] using the assumed

stress hybrid finite element model [52] in conjunction with the quadratic tensor

polynomial failure criterion [531 to predict the onset of transverse cracking and

delamination. In the present study, continuous traction Q-23 element with a uniform

100 element-model shown in Figure (60) was used to analyze one quadrant of a

typical x=constant plane in the laminate specimens. The calculated stresses along the

traction-free edge were then substituted into the following failure criteria to determine

the possible sites for initiation of transverse: cracks and delamination.
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Figure 60: 100-Element Model
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6.3.2.1 Anisotropic Strength and Failure Criteria

With macroscopically homogeneous but orthotropic materials, development of a

strength theory has been frequently accomplished by extending one of the isotropic

analyses to account for anisotropy. Since strength theories are used primarily to

predict onset, rather than mode of failure, the macroscopic viewpoint will predominate.

It has been stated [531 that all the failure criteria are the degenerate cases of the

tensor polynomial failure criterion

Fioi+Fijcrio'j+Fijk" I (j (k +.... > 1 (194)

or, explicitly

F nun+F 2 a7+F 3 o'3+2F 12or I 2+2F 13Cr l°a 3 +2F23°" 2o 3

2 2 3 2 2 2 >
+F n lo-i+F 2 2cT2+F 3 3a 2 +F 4 4c" 4 +F55c 5+F 6 6o"6 ...... , 1 (195)

Here, or, are the stress tensor components in the material coordinatts and Fi, Ftj and F,

etc. are the components of strength tensors, all components are referred to the material

principle axes. In (195), terms associated with cr4. a., and a6 which are

F., Fs, and F6, are taken to be zero since shear strengths are the same for positive and

negative shear stress. It is also assumed that there is no interaction between shear

stresses and normal stresses, thus F1., F2,, F,, etc. become zero.

The strength and failure criteria considered in the present study include the

maximum stress criterion, maximum strain criterion, Hoffman's criterion and the

Tsai-Wu criterion. The reason for choosing these criteria was not only their popularity

but also because they include unequal tensile and compressive failure strengths.

143



Maximum stress criterion

Failure of material is assumed to occur if any one of the following conditions is

satisfied [471

0i>XT; a 2 >Y T o 3 > ZT (196)

0,4 >R; O 5 >S; 0-6 >T

where or,, 0r2 o'3 are the normal stress components; o-,, cr, (T, are the shear stress

components: \ , Y, Z, are the lamina normal strengths in the x, y, z directions

respectivelv; and R, S, T are the shear strengths in the yz, xz and xy planes,

respectively. When oa. ,o(, o- are compressive, they should be compared with

. Y and Z,, the normal strengths in compression in the x, y and z directions.

Reddy [54] stated that the maximum stress criterion could also be expressed in the

form of tensor polynomial criterion as

(OaI-XTXO"1 +X cXa'-YTxa2 +Y cXa3-ZT X0,3 +Z cXa-4-RXcr4+R)

(crs-SXr S+SX£r6-TX7 6+T)=O (197)

Comparing (197) with (195) and ignoring those higher order terms, the strength tensors

are [541

1 1 1 1 1 1- -. . . . FI =- ._ F,;I3

XT XC "r C 3 Zr Z C

I]= ;T 1:22= yY '3 ZFZ3
TXC YT7 TC (198)

F44= -2 Fs = 2; F6- -2
R S T
FIF FxF FzF

F 12=-- ; F  3=-----; F 23=------3
2 3 2 ' 3 2

and the remaining strength constants are zero.
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Maximum strain criterion

Failure is assumed to occur if one of the following conditions is satisfied 148]

C I >XET if62 > YT'; 3 >ZeT (199)
6 4>R RE; 6 5 > S e:6 6 >T 4

where F-1. C2, F, are the normal tensile strains in the x, y, z directions respectively;

64, ES, F66 are the shear strains in the yz, xz and xy planes respectively; X,., Y, 1 , Z,

are the tensile strain strengths in the x, Y, z directions and R,. S,. T, are the shear

strain strengths in the yz, xz and xy planes respectively. Agtain, expressing the

criterion in the form of' tensor polynomiial (195),

(Erz -x, .XE I +\ X(XE ,-Y', r~ X~ E -, ZC -,4+%

(ES-sE X rES+S 6 XE 6- T, XEr: +,r )=o (20X))

Expressing strains in terms of stresses via the compliance matrix for orthotropic

materials, (200) can be expressed in the form of (195) and we have [541

S1 A S 3A

S22 -3 3

F=-S2F +FA+ S"3FA
I 2 3

F S 1 3 A~
F3 S -F S 2 +3

1 S

F ____ 2 +1 S 3)2 S1 : A S 2FA FA S12 S 3 YA FA
' Xx S 1z 3- 1~ 12 2

11XT C 2,2 T YC S33 TC 33 S22 22S3323

1__ S(1 2 )2 1 + 3)21 S1 A A_ S3AAS 2 S 2 3A A
-- F F -F F-F F

22YTYC SI I XT XC S33 zTZC 1I 1 33 2 11IS33

F +(-L 2)2  l +(23 )2 1 SI-3 A A_ 23 A A_ 3S2F(- =--F F -F F F 1:3 A
33~ z KY - 1 3 S" 2 3 ' S 1

TZ S1 H \TX( S22 YT) C I 2 11 22
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F44= ; F2S 2; F 66-2
R S T

S12 + S1 2 _L_ s 3ss
F12  S S2__Z
F I SI XT XC S22 YTYC S337r~

1 ($2 +I)FAFA 1 (S 3 S2 + S23)FAFA S 122 + S3 )FAF
255 " ' 2 2.. . . I~ 32.. . . 2 3

11 22 2 133 33 2 2233 33

SSI S525.

S13 1 3 11F13- Si XTXC $3 ZT. (  S22 YTY

11 T 33F S SS

1 13 2A. "I' 1
,  

. -\ ,A 32, 3 • I .A A

2 S S 13 2 S S 2 S22  2 S 2 2 S3 3  S 23
S 33 1 ] -S2S13

523 I + S23 + -2S 
XTXc

23- $ 22 YT C S 33 ZTZC sII

SA2  S S A l S23S 1
-2($23 12S23 1'3 )FA.--,--3 +S -2 )FAFA (201)

2S 2 2 S 33  2 3 2"S 11 S22  S1 1  1 2 2 S1 iS 3 3  SI 11 3

Here, Stj (i,j=1,2,3) are the components of the compliance matrix, and F', F2, FA are

the expressions given for F,, F2, F3 in the maximum stress criterion.

Hoffman's criterion

Hoffman's criterion [49] is a special case of the tensor xolynomial criterion for the

following choice of the parameters F, and F,,:
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~ F F
XTXC - 'T C 3 ZT ZC

XTC YT C zTZC

1 1 _1

Fa4'a Fs=S'; F6=_T

R2  S2  6T (202)

F 1! 1 + 1- 1 )
12 2XTXC YTYC ZTZC

F =-I( I + 1 I )F, 2 X.IX Z.rZ(. YTyc

=+ ) -__
2 2- Z.Z z . 'Q I r.

Tsai-Wu criteria

The Tsai-Wu criterion is given by

Faio-+Fijcr iOj> 1 (203)

where

F - I 1 .F - 1 1 .F = L _
XT XC 2YT YC 3 Z

F -XTX1 ; F22= yy ;F 33= ZTZ
XTXC Y IYC z zCF= 2.F 5=42;F 6

R T F
2 (204)

2 Y1

1
3 2 "xXTXcZTZc

F 23 =
2 .[/YTYcZTZC

Here, it is noted that the maximum stress and maximum strain criteria involved

several separate equations, and there was no allowance for interaction of the stresses or

failure modes. The Hoffman criterion and Tsai-Wu criterion, however, do provide for
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interaction, and the interaction is fixed. That is, these failure expressions are not

invariant with respect to coordinate system. As expressed in terms of quadratic tensor

polynomial shown in (202) and (204) respectively, the only difference between these

two criteria was on the determination of strength tensors F,2, 1131 Fn.

6.3.2.2 Onset of Material Damage

l'ach laminate specimen was tested individually in an electro-hydraulic,

ser\o-controlled closed-loop testing machine [511. The strain and nominal stress at the

firt sight of transverse cracking and onset of delamination are summarized in 'able

(5).

h'lie measured strength (ksi) of 1300/5208 graphite epoxy are given by [50]

Longitudinal tension : XT = 210

Longitudinal compression : Xc = 200

Transverse tension : YT = 10

Transverse compression : Yc = 21

Shear in 1-2 plane : S = 13

It is further assumed that Z=Y,, Zc=Y o R=S and T=S/2. Substituting above

information into (198), (201), (202) and (209) to calculate F, and F , the strength

tensor for any complex stress state can then be obtained and compared with the actual

stress tensor. Failure is assumed to occur when the magnitude of the actual stress

tensor exceeds that of the strenth tensor.

Transverse Cracking

Based on the stress field calculated from the continuous traction Q-23 element, the

four failure criteria discussed in 6.3.2.1 were applied to every point along the

traction-free edge for all five laminate specimens at the strain levels shown in Table

(5), respectively, when the first sight of transverse cracking was detected. The results
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TIable 5: 'r'est Results for [(j. e )2/901., Laminate

e 5 15 25 35 45

Transverse Strain M% 0.493 0.326 0.301 0.351 0.532

cracking Stress (ksi) 69.7 39.6 29.1 20.5 15.9

Delamination Strain MV. 0.697 0.383 0.336 0.406 0.620

----- -- -- -- - Stress -(ksi) .- 99.3 -.- 46 -7 30.8 23.9 18.2
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are shown in Figures (61)-(65) along with Chou's [50] predictions. Those points that

lie in the region where the actual stres-to-strength tensor ratio is greater than unity

represent failure. Due to the discrepancy of the calculated stress field based on

different numerical schemes, the prediction of the lamina failure surface from the same

failure criterion (such as Tsau-Wu theory) varied significantly through the laminate

free-edge. An obvious failure phenomenon resulting from the transverse cracking

\%ithin the 90-degree layer was detected based on the continuous traction Q-23 element

I or all the laminate specimens. At the same time, initiation of edge delamination at

lhe interfaces het ween 0 and -0 leco1e apparent as the value of 0 increases, which

w\as, not indicated according to (Thou's analysis. llowevcr, the fact that trans\erse

cracks al\vays occurred prior to delamination in all cases is noticed, and this indeed

matches experimental observation [51]. Here, it is noted that the magnitudes of

stress-to-strength ratios shown in these figures sometimes departed significantly from

unity particularly in the interior of transverse layer and near the interfaces. This

could possibly be due to the inaccurate insitu transverse strength data and the

inappropriate assumption of the interlaminar strengths.

Edge Delamination

lollowving the same procedure as in the prediction of transverse cracking, maximum

stress, maximum strain, Iloliman and Tsai-Wu criteria were applied to every point

along the free-edge of various laminate specimens at the respective strain level

correponding to the onset of delamination. For illustration, failure surfaces predicted

from the continuous traction Q-23 element for 0=5' and 0=25' laminate specimens are

shown in Figures (66) and (67). In the case of 0=5', Figure (66) shows that

following the transverse cracks formed in the 90-degree layer, delarninations were
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developed at the interflaces between 5/-5 layers. Meanwhile, transverse cracks also

extended to the angle-ply layers under incremental loading. The fact that all the

failure surfaces exceeded unity shown in Figure (67) might result from the inaccurate

material strength data. For the 0=25* laminate, however, transverse cracks were still

confined to the 90-degree layer as delamination propagated at the 25/-25 interfaces.

Based on these observations, we can infer that fiber orientations of the laminates with

the an e stacking sequence ha\e played an important role on the determination of

damiace m,des under incremental lozaditw.

In ceneral, the Iofiflan lheorN had more conser\at ive predictions than the others

on the initiation of transverse cracking within the 90-degree layer, and the maximum

strain criterion predicted conservatively on the subsequent edge delamination at the

interfaces between angle-ply laminae. Since the materials were assumed linear elastic

in the analysis, the applied strain loading corresponds to the onset of transverse cracks

or delamination based on the continuous traction Q-23 model, and the failure criteria

would be expected to be lower than the experimental observation. However,

throughout the analysis, delamination was assumed to occur in a state of generalized

plane strain without the influence of transverse cracking. In reality, this is not the

case. More work needs to be done to study the interrelationships between delamination

and other damage modes such as matrix cracking and fiber breakage, etc. Also, many

practical composite systems actually exhibit extensive nonlinear mechanical response in

shear and transverse to the reinforcement, resulting in nonlinear laminate mechanical

behavior. Extension of the present continous traction finite element procedure to

include nonlinear material behavior, along with careful determination of material

properties and strength data, may lead to better estimation of initiation of various

damage modes under incremental loading.
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SECTION VII

DISCUSSION

The problem of free-edge delamination in composite laminate coupons subjected to

on itori in plane estension ha, leen m\est it'ated. Before delamination can be predicted

\i, a ,1res, hascd filIre crilerion. an OiCL'rille st res, cAIculation within the laminate.

parlicularI\ near the interfaces and tirctiOn free loxundairy, is necessary. llowever, the

stress field under this situation is highly complex in nature. Besides, the anisotrop\

and heterogeneity of the material system, and presence of the traction-free boundary

makes the analysis difficult. Literature on this subject was abundant but an effective

as well as reliable solution had not been found.

The present research effort has resulted in developement of a continuous strain

finite element model in plane elasticity based on the compatible cubic interpolation

function proposed by Clough and Felippa [40], in which the normal slope continuity

was ensured across the interelement boundary. lxtending) the continuous strain model

to the analysis of a pseudo tw\o-diniensional free-edge delamination coupon under

uniform extension, a continuous strain field along both inplane and transverse directions

was obtained. However, due to material anisotropy, the stresses along the interfaces

between differently oriented layers were discontinuous. Also, traction-free boundary

was not satisfied. The continuous strain model was used as the basis for the

developement of a continuous traction finite element procedure. Knowing the fact that

the displacement field within each element is described by nodal displacement
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components and their gradients, to ensure traction continuity, a transformation procedure

was developed to map the gradients normal to element boundary to a mixed set of

degrees of freedom through appropriate displacement-stress relationships. For global

assembly, the nodal degrees of freedom of this element include interlaminar stress

components at the corner nodes, as well as traction components at the mid-side nodes

of each element. This ensures continuity of displacement and traction along

interelement boundaries as well as across laminate interfaces providing a small

del ,rMa lion sitUlion is considered. At the same time, equilibrium condition is

mitintlited bet\\en two adjacent elements (layers). A significant aspect oi this

displicenent-based formulation is that it allows traction-free boundary conditions to be

specified in a point-wise sense.

In the four-ply laminate analysis, numerical results calculated from the continuous

traction Q-23 element generally agreed well with Pagands analytical solutions [8]

although these two schemes were based upon quite different theories. For illustration,

Table (6) outlines the basic characteristics associated with each of these approaches.

The approximate solutions for stress components -, and ar, which play an important

role in delamination of composite laminates, were calculated using both approaches and

found to have similar distribution. The study also revealed that the pattern of mesh

refinement had significant effect on the estimates of interlaminar stress field in the

vicinity of traction-free edge or near the interface between two differently oriented

layers. Here, it is essential to realize that the continuous traction finite element

procedure is only applicable to the Q-23 element and cannot be simplified to Q-15 and

Q-19 elements. This is because the continuity of traction across laminate interface

cannot be simplified in the absence of mid-side nodes at the interface between two
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'Table 6: (onparison of Pagano's Iheory and (ontinuous 'Traction Q-23 Element

Method Pagano Continuous traction Q-23

Variational Reissner's variational Minimum potential
principle principle energy principle

Type of formulation Mixed Displacement

Basis of field
equations Plate theory Elastic solid

Assumed inside each Kinematic relations Kinematic relations
layer (element) & Stress equilibrium & constitutive law

Along interlaminar Continuous traction Continuous displacement
boundary & weighted displacement & traction

Assumed stress Inplane---linear Quadratic
w.r.t. Z-axis Transverse---cubic

Unknowns in final Weighted displacements Displacements
equations & interlaminar stresses & interlaminar stresses

Solution technique Direct solving Finite element method
differential equations
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ad. acent layers. In comparison with the continuous strain Q-23 element, the

introduction of the transformation process in the Q-23 element makes the continuous

traction procedure more expensive. tlowexer, the continuous traction Q-23 element

significantly improves the reliability of the stress field solution because of the

interlaminar stress continuity at the interface between differently oriented fiber layers,

along with satisfaction of traction-free boundary condition along specimen edges.

Application to the multi-ply laminate specimens with stacking sequence of

[)-0),,,90, j further illu,strated the potential (1 the continuous traction finite element

plm0edtole in the anal,;sis (1' edge delamin;jtion problem. Satisfactory agreement \k as

generally obserxed for interlaminar stress distributions as well as laminate displacement

field betveen continuous traction Q-23 element and constant strain element solutions

[441 except that, in the vicinity of the free-edge, the constant strain element was

deficient due to nonsatisfaction of traction-free boundary condition (ry=0) and the

assumption of (r.,,=O) imbedded in the axisymmetric analysis. The results from the

continuous traction Q-23 element would be expected to be superior to the constant

strain element (conventional assumed displacement elements) for prediction of stress

field in the free-edge delamination specimens. Of course the simple axisymmetric

model is economical to use.

Regarding prediction of damage initiation in laminate composite coupons,

[(0/-0),/0], under incremental loading, the continuous traction finite element procedure

along with some popular anisotropic failure criteria was found to be successful in

modelling some failure phenomena observed in the experiments. Basically, the laminate

specimens under analysis were assumed to be made of linear elastic brittle materials.

Thus. initiation of delamination directly led to catastrophic laminate failure regardless

162



of the damage accumulation process. Numerical experiment discussed in the last section

revealed that the Iioffman criterion had a more conservative prediction on the

initiation of transverse cracking within the 90-degree layer, and the maximum strain

criterion on the subsequent edge delamination between the angle-ply laminae interfaces.

In summary, we conclude that the proposed continuous traction finite element

scheme not only overcomes the drawback of deficient stress calculation arising in the

c(ofventional asuwnied displacement approach, but also provides a reliable as well as

eli Ci \ e numerical solution prcedure \\ ithi a \\jider range of applicability to the

anallYsis ol the I ree-edge delaminalion problem. Though based on a completel)

different variational lormulation, this model i has shared the characteristic of continuous

displacement as well as traction fields across laminate interface, with Pagano's

approximate theory derived from a mixed formulation. Though developed for

evaluation of stresses in composite laminates, the continuous traction procedure is also

applicable to analysis of layered media involving material interfaces where a

two-dimensional or pseudo two-dimensional representation is applicable. This would

include stresses in layered airfield and highway pavements, pressures on tunnel lining,

etc.
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Appendix A

DERIVATION OF COMPATIBLE CUBIC

INTERPOLATION FUNCTIONS

"lhi, appendi-\ conl ,ins a uimar I clhpi(,- 141.42] approach in derivinv the

cthic omlpatible interpolations for in-plane disphcement u in a more detailed format.

In order to derive the cubic interpolation functions for the complete trianvular

element, three different coordinate systems, i.e. triangular coordinate, local and global

Cartesian coordinates should be defined as illustrated in Figure (A.1). The geometry of

an arbitrary triangular element can be expressed in a Cartesian coordinate system by

its nodal coordinates or its projected dimensions as shown in Figure (A.2), or

alternately by its intrinsic dimensions as defined in Figure (A.3).

Let J and k denote the first and second cyclic permutations of i=1,2,3 (i.e. j=2.3,1

and k=3.1,2), the projected dimensions may be written as

a =X -x b =\ -vk (A.1)'I I

Also, the intrinsic dimensions may be defined in terms of the projected dimensions.

Referring to Fioure (A.2), define

d

A -~ '(A.2)
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(x 3,y3) A : total area

(i= 1,2,3)

I A

n

A3A

nl

x

~ure AA.1: TrianjuIarn r. iI and Global Cartesian Coordinates
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(X.3 ,)

a 2 -4- al

Figure A.2: X-Y PrOJeCted Dimensions
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Figure A.3: IntrinsiL Dimensions
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jI -At (A.3)

d (aib k (A.4)

The triangular coordinates , , of any point 'T" in the triangle wray be defined

either as the ratios of' the areas A, of' the SUbtriangle, suibtended by the point to the

lotud a rca A of' the trian& l. or a,, the rat ios of' the norma distances n, to the heigh 1

A n

A h,

as shiow.n in Figure (A.1). It is noted that the triangular coordinates are related by

the constraining condition t,+t2+t3=1

With reference to Figure (2). the displacement interpolation functions for each

subelement (i) express the relationship between the displacement u within the element

and the ten displacement components of its nodal points r"' as follows

u (A.6)

F or example, the nodal displacement vector for subelernent I is

ir(1 U2 ,,u .u 3'1, u U",,u N1,u (A.7)

The corresponding ten cubic interpolation functions expressed in triangular coordiates are
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(a,3- 1 +

2 ) __ (I)

2= 2(a 3-a 3  gI . ... (A.8)

2 (-2 ,)+6X (I)X .

2 3-2 -a 2

(' 'I) -a

3 l 2 1

where the subscripts correspond to the renumbered nodes of the subelement. and , are

the local triangular coordinates of points in subtriangle 1. With this convention, the

interpolation functions for subelements 2 and 3 are the same as (A.8) appropriately

permuting the subscripts and superscripts. It should be noted, however, that the nodal

displacements in (A.6) are identified by node numbers defined for the complete element

assembly.

If the vector Ir) of all nodal displacements of the complete element assembly is

'Aritten as the ordered set

1i}' {u ,U 2u 2.u, u3 u ,3 y\"u ,u ,s'U lou ,u 'o (A.9)

the displacement in subelement I can be expressed as

u =1) 1}) r}(A. 73
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where fiO"} is similar to (A.8), but expanded with 5 /eros to account for the nodal

displacements not associated with subelement 1, and with appropriate arrangement of

terms. The vectors 1)'} and { represent the interpolation functions for the

external and internal nodal displacements respectively.

Expressing the displacements in the other subelements similarly, the complete

system of displacements can be written as

U r

0 r

(A.11) is an expression of the cubic displacement patterns in the three subelements.

The displacement of two adjacent subtriangles are identical along their common

boundary. The normal slope at any of these nodes (say 7 of subelement 1) is given

by

r

(-AL ) - = (A. 12)
0n [v 70 r

where b7 , respectivel.N" are values of - } at node 7 for subelement 1,
an an

and n denotes the axis normal to the element boundary. To maintain internal slope

continuity, it is necessary that w;' =_e;3, where the negative sign results from the

convention that the positi\e normal is directed outwards. For the three txints 7, 8, 9,
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0 7 +0 7 b 7 +b 7eI b7 0+b7 o r 0o
Q)+c() = b (2)+b(i) 1I2)+b() 0 (A. 13)8 h e he 8 0S 8,

(3) (2) (3) + (2) b(3) +b(2 r
e 9 + 9  b 9 " 9 e 9o 9o

or symbolically

r

[iB)]- = 0 (A.14

r

The values of r, which will satisfy these conpatibility conditions are obtained by

solving (A.14), i.e.

r =-BoIBr=Lr (A.15)
r 0

Substituting the slope continuity constraint of (A.15) into (A.11), the fully compatible

displacement field in the three subelements becomes

(1) 0 (), r 0(j), r

(2 )= ( + I. r} (A.1 6)

Explicit expressions of these functions for subelement 3 are

4(3) = -(3-2, )+6u. l, J+ [[3(Xh- ) +(2 -X2)-
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(3) 2( a ),a -
u . 1 322-A333 A 23uxl

1 2

+.I-t2[3(2a -a--a X) +3(a -a ) ,+(-3a +2a3+a X)3

(3)
u = Y (b23- - 2) (,-b3/,t3)tlt- 3

(3)

(3)x 2 2(a i 3-a3 )+(a2-a X)l

+ Lt213(a3X-a 2) ,+3(a 1jz+a X-2a2 ) +(3a 2-a /A 2a A

(3) = 2(blt-b, )+(b -b

+ -1_2[3(b-biX +2b,) 2+(-3b+b 1  +2b 3 X )]

(3) 1 V 3( a +3 + , , ) .a+ a + a A ) ( -

2 I

I 76
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(3) 1 6 2 [3(b, +3b +b2 ) + 3(3b +b2+b ,X ), )-(b X,-bd2)l
(3)

(3 -4A[2 =,Q

un5  3

0 / _}- 4 - ' A [ ( 3 1- ) ( A .1 7 )

4, 3A.,7)

The above set of interpolants is applicable to all points lying in subtriangle 3. For

points lying in subtriangle I and 2, {")}, {V(2)} can be written down by cyclic

permutation of all subscripts and superscripts in (A.17). All the symbols on the right

side of (A.17) relate to the complete triangle.
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LIST OF SYMBOLS

A list of the most commonly used symbols and their general meaning follows.

a, b Global dimensions of a triangle

A Area of triangle

A Area of subtriangle i

B Material constants
i

CIJ Components of the stiffness matrix in the

global coordinate system

C, Components of the stiffness matrix in the

material coordinate system

S Components of the compliance matrix in the
Ij

global coordinate system

S Components of the compliance matrix in the
Ii

material coordinate system

QV( Comxnents of the transformed reduced

stiffness matrix

Q), Comxnents of the reduced stiffness matrix

d Projection of' a corner of a triangle over opposite side

D11 Inversion of Q

I)1 i)2 I ),, Cnomornents of the reduced material

coinpliance nalrix

I Young's nmduli
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I ('arlesia n components Al tile hodN foirce vector

Ii Triangle heir'hts

h Lamina thickness

K. Elements o1 Stiffness matrix

Triangle side lengths

N N\ornm to houndar%-

A I .ear opera ~r or matrix of linear operators
on a regiol IR

U i near operator or miori\ of lineiir operators;
on the )ou nda r\ ol R

I) IDomain of operator A

F n-dirensional .uciidean space

R Open connected region in E"

S Boundaryv of R

SI, S, Complementary subset of S

R Closure of R

n, L ocal cartesian components of the unit

normal to a surfacc

S~OC IoclMcateSian1 components of thle Unit

iangentia to a surface

H Open connected subregion of R

Boundary of' suhregion K,

all Cartesian components of the stress tensor

ul Cartesian components of the displacement vector

('artesian; cornponlents '! T hL I riction vector
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Cartesian components of the prescribed

traction vector

Kronecker's deltatI

I'ik I :,rtesian components of the isothermal

elasticity tensor

Interpolation functions

u1 Assumed displacements in element m
I Fr

AssUMed generalized nodal displacements at the
boundary of element in

II Assumed generztli/ed dmal displacements internal

to element in

e Vector of strains in element m deriving from u...

K Stiffness matrix

F Load vectors

x y z Cartesian coordinates in E3

V Poisson's ratio

G Shear moduli

E Components of infinitesimal or linear strain tensor

Natural coordinate

0. Rotation angle from global axis x
to material axis 1

T, Transformation matrix

e(, Applied uniform strain loading

u Displacement component in x-direction

v Displacement component in y-direction

w l)isplacement component in z-direction
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U Displacement function in x-direction

V Displacement function in y-direction

W Displacement function in z-direction

0 fiber orientation

Geometric parameters

Linear functional

G IDisplacement-stress transformation matrix for corner node

Ii L. J, isplacement-stress transformation matrix for mid-side node

13k Bilinear mapping on N!V XV

I Coordin~ate transformation tensor
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